A Pen by Shigeru Kobayashi on CodePen.
Last active
August 20, 2018 03:42
-
-
Save kotobuki/259bf67f6d921e149d04bba48db39a7d to your computer and use it in GitHub Desktop.
Grad-CAM [WIP]
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<!DOCTYPE html> | |
<html> | |
<head> | |
<meta charset="utf-8" /> | |
</head> | |
<body> | |
<h1></h1> | |
<img id="bird" src="https://ml5js.org/docs/assets/img/bird.jpg" crossorigin="anonymous" /> | |
</body> | |
</html> |
A Pen by Shigeru Kobayashi on CodePen.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
console.clear(); | |
let sourceImg; | |
function setup() { | |
sourceImg = select("#bird"); | |
sourceImg.class("img").size(224, 224); | |
loadMobilenet(); | |
} | |
async function loadMobilenet() { | |
const model = await tf.loadModel( | |
"https://storage.googleapis.com/tfjs-models/tfjs/mobilenet_v1_0.25_224/model.json" | |
); | |
model.summary(); | |
// Reference: | |
// https://github.com/Ankush96/grad-cam.tensorflow/blob/master/main.py#L29-L62 | |
const nbClasses = 1000; | |
model.predict(imgToTensor(sourceImg.elt, [224, 224])).print(); | |
const predictedClass = model | |
.predict(imgToTensor(sourceImg.elt, [224, 224])) | |
.as1D() | |
.argMax(); | |
let classId = (await predictedClass.data())[0]; | |
const convLayer = model.getLayer("conv_pw_13"); | |
const oneHot = tf.oneHot(tf.tensor1d([classId], "int32"), nbClasses); | |
const signal = tf.mul( | |
model.getLayer("reshape_2").output, | |
oneHot.asType("float32") | |
); | |
// TODO: Implement following lines... | |
} | |
// From: https://github.com/ml5js/ml5-library/blob/5756876f3647cab6ff657dd0db4ec92ed668796e/src/utils/imageUtilities.js#L64-L75 | |
function imgToTensor(input, size = null) { | |
return tf.tidy(() => { | |
let img = tf.fromPixels(input); | |
if (size) { | |
img = tf.image.resizeBilinear(img, size); | |
} | |
// const croppedImage = cropImage(img); | |
const batchedImage = img.expandDims(0); | |
return batchedImage | |
.toFloat() | |
.div(tf.scalar(127)) | |
.sub(tf.scalar(1)); | |
}); | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<script src="https://cdnjs.cloudflare.com/ajax/libs/tensorflow/0.12.5/tf.min.js"></script> | |
<script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/0.7.1/p5.min.js"></script> | |
<script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/0.7.1/addons/p5.dom.min.js"></script> |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment