Skip to content

Instantly share code, notes, and snippets.

@kotobuki
Created October 16, 2018 02:08
Show Gist options
  • Save kotobuki/ee7ba97eec4fd4abf801dba53dafcd69 to your computer and use it in GitHub Desktop.
Save kotobuki/ee7ba97eec4fd4abf801dba53dafcd69 to your computer and use it in GitHub Desktop.
Transfer Learning
<body>
<fieldset>
<legend>1. Train</legend>
<p>Specify a label for images, press the button to upload images for training. Once finished adding images for all labels, press the Train button to start training.</p>
<div>
<label for="labelForImages">Label for the images:</label>
<input type="text" id="labelFormages" name="labelForImages" />
</div>
<div>
<label for="imagesToTrain">Images to train:</label>
<input type="file" id="imagesToTrain" name="imagesToTrain" multiple />
</div>
<div>
<label for="progress">Progress:</label>
<progress id="progress" name="progress" max="100" value="0"></progress>
</div>
<button id="trainButton">Train</button>
</fieldset>
<fieldset>
<p>Choose an image (or images) to test. Once confirmed, press the Save button to save the trained model to your local.</p>
<legend>2. Test</legend>
<div>
<label for="imageToTest">Image to test:</label>
<input type="file" id="imageToTest" name="imageToTest" multiple />
</div>
<output id="result"></output>
<button id="saveButton">Save</button>
</fieldset>
<p><span id="status">Status</span></p>
</body>
console.clear();
let featureExtractor;
let classifier;
let status;
let labelInput;
let trainButton;
let saveButton;
let progress;
let canvas;
let halfWidth;
let halfHeight;
const imageSize = 224;
function setup() {
status = select("#status");
status.html("Loading the model...");
labelInput = select("#labelFormages");
trainButton = select("#trainButton");
trainButton.mousePressed(trainRequested);
saveButton = select("#saveButton");
saveButton.mousePressed(saveRequested);
document
.getElementById("imagesToTrain")
.addEventListener("change", handleImagesToTrain, false);
document
.getElementById("imageToTest")
.addEventListener("change", handleImageToTest, false);
progress=document.getElementById("progress")
canvas = createCanvas(imageSize, imageSize);
canvas.position(status.elt.offsetLeft, status.elt.offsetTop + 20);
halfWidth = width / 2;
halfHeight = height / 2;
// Change the number of epochs from 20 (default) to 50
// See https://github.com/ml5js/ml5-library/blob/f471eec18b7b64347b355ced8bc40604827924b3/src/FeatureExtractor/Mobilenet.js#L25
const options = { epochs: 50 };
featureExtractor = ml5.featureExtractor("MobileNet", options, () => {
status.html("Please specify an index and upload image files");
});
classifier = featureExtractor.classification();
}
function handleImagesToTrain(evt) {
let files = evt.target.files;
const numFiles = files.length;
let processedFiles = 0;
status.html(`Processing ${numFiles} images...`);
progress.max = numFiles;
for (let i = 0, f; (f = files[i]); i++) {
let reader = new FileReader();
reader.onload = function(event) {
img = loadImage(event.target.result, img => {
image(
img,
0,
0,
width,
height
);
// We'll be able to supply the canvas directly in the near future
// See https://github.com/ml5js/ml5-library/pull/206
const src = canvas.elt.toDataURL();
let tmpImg = createImg(src, "Failed to create", () => {
tmpImg.class("image").size(224, 224);
classifier.addImage(tmpImg.elt, labelInput.value());
});
tmpImg.remove();
});
processedFiles++;
progress.value = processedFiles;
if (processedFiles === numFiles) {
status.html(`Processed ${numFiles} images`);
}
};
reader.readAsDataURL(f);
}
}
function handleImageToTest(evt) {
const files = evt.target.files;
const numFiles = files.length;
console.log(`Testing on ${numFiles} image(s)`);
for (let i = 0, f; (f = files[i]); i++) {
let reader = new FileReader();
reader.onload = function(event) {
img = loadImage(event.target.result, img => {
resetMatrix();
background(0);
image(img, 0, 0, width, height);
const src = canvas.elt.toDataURL();
let tmpImg = createImg(src, "Failed to create", () => {
tmpImg.class("image").size(224, 224);
classifier.classify(tmpImg.elt, (err, result) => {
if (err) {
console.error(err);
}
// I want to get multiple results, instead of the top one
status.html(result);
console.log(`${f.name}: ${result}`);
});
tmpImg.remove();
});
});
};
reader.readAsDataURL(f);
}
}
function trainRequested() {
classifier.train(loss => {
if (loss) {
status.html("Training... loss: " + loss);
} else {
status.html("Done training! Upload an image file to test.");
}
});
}
function saveRequested() {
classifier.save();
}
<script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/0.7.2/p5.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/0.7.2/addons/p5.dom.min.js"></script>
<script src="https://cdn.jsdelivr.net/gh/ml5js/ml5-library@f471eec18b7b64347b355ced8bc40604827924b3/dist/ml5.min.js"></script>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment