Created
November 13, 2015 19:57
-
-
Save koustuvsinha/944eb5b929c7d2249aed to your computer and use it in GitHub Desktop.
Twitter News Classification with SMOTE sampling
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(RTextTools) | |
library(DMwR) | |
library(stringi) | |
#load data | |
crime <- read.csv("CleanedDataNew.csv") | |
crime$X <- NULL | |
nrow(crime) | |
crime_bal <- crime | |
crime_bal$target <- as.factor(crime_bal$target) | |
prop.table(table(crime_bal$target)) | |
cat("Crime Nos") | |
nrow(crime_bal[crime_bal$target == 1,]) | |
cat("Non Crime Nos") | |
nrow(crime_bal[crime_bal$target == 0,]) | |
# oversampling, keeping neg same but pos 8 times more | |
crime_bal <- SMOTE(target ~ .,crime_bal,perc.under = 100, perc.over = 800) | |
# undersampling, keeping pos same but neg reduced 2 times | |
# crime_bal <- SMOTE(target ~ .,crime_bal,perc.under = 200, perc.over = 100) | |
# crime_bal <- SMOTE(target ~ ., crime_bal, perc.over = 100, perc.under=200) | |
prop.table(table(crime_bal$target)) | |
cat("Crime Nos") | |
nrow(crime_bal[crime_bal$target == 1,]) | |
cat("Non Crime Nos") | |
nrow(crime_bal[crime_bal$target == 0,]) | |
# Rearranging rows | |
crime_bal <- crime_bal[sample(nrow(crime_bal)),] | |
#remove hashtags | |
crime_bal$text <- stri_replace_all(crime_bal$text,"",regex = "#\\S+") | |
# crime_bal <- crime | |
training_data <- cbind.data.frame(crime_bal$text) | |
training_codes <- cbind.data.frame(crime_bal$target) | |
matrix <- create_matrix(training_data, language="english", removeNumbers=FALSE, stemWords=TRUE, removePunctuation=TRUE, removeStopwords=TRUE,stripWhitespace=TRUE, toLower=TRUE) | |
container <- create_container(matrix,t(training_codes),trainSize=3000:7293, testSize=1:2999,virgin=FALSE) | |
# container <- create_container(matrix,t(training_codes),trainSize=2001:6326, testSize=1:2000,virgin=FALSE) | |
# container <- create_container(matrix,t(training_codes),trainSize=601:1328, testSize=1:600,virgin=FALSE) | |
models <- train_models(container, algorithms="SVM") # this line is calling SVMforest | |
results <- classify_models(container, models) | |
analytics <- create_analytics(container, results) | |
analytics@ensemble_summary | |
create_precisionRecallSummary(container, results, b_value = 1) | |
crime_test = crime_bal[1:2999,] | |
# false positive calculation | |
nrow(results[results$SVM_LABEL == 1,]) | |
rows <- which(results$SVM_LABEL == 1) | |
classified_as_crime <- crime_test[rows,] | |
false_positive <- classified_as_crime$target == 0 | |
true_positive <- classified_as_crime$target == 1 | |
n_false_pos <- sum(false_positive, na.rm = TRUE) | |
n_true_pos <- sum(true_positive, na.rm = TRUE) | |
false_pos_rows <- which(false_positive) | |
# false negative calculation | |
nrow(results[results$SVM_LABEL == 0,]) | |
rows <- which(results$SVM_LABEL == 0) | |
classified_as_noncrime <- crime[rows,] | |
false_negative <- classified_as_noncrime$target == 1 | |
true_negative <- classified_as_noncrime$target == 0 | |
n_false_neg <- sum(false_negative, na.rm = TRUE) | |
n_true_neg <- sum(true_negative, na.rm = TRUE) | |
false_neg_rows <- which(false_negative) | |
## ROCR Graph Calculation | |
library(ROCR) | |
pred <- prediction(results$SVM_PROB, results$SVM_LABEL) | |
perf <- performance(pred,"tpr","fpr") | |
plot(perf) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Dataset - CleanedDataNew.csv