Created
October 23, 2019 01:41
-
-
Save kperry2215/07daaf0b773833957847f0ca1d469afc to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
from sklearn.ensemble import ExtraTreesClassifier | |
from sklearn.model_selection import train_test_split | |
from sklearn.naive_bayes import BernoulliNB | |
from sklearn.pipeline import make_pipeline, make_union | |
from sklearn.preprocessing import RobustScaler | |
from tpot.builtins import StackingEstimator | |
# NOTE: Make sure that the class is labeled 'target' in the data file | |
tpot_data = pd.read_csv('PATH/TO/DATA/FILE', sep='COLUMN_SEPARATOR', dtype=np.float64) | |
features = tpot_data.drop('target', axis=1).values | |
training_features, testing_features, training_target, testing_target = \ | |
train_test_split(features, tpot_data['target'].values, random_state=None) | |
# Average CV score on the training set was:0.7615725359911407 | |
exported_pipeline = make_pipeline( | |
StackingEstimator(estimator=BernoulliNB(alpha=0.001, fit_prior=False)), | |
RobustScaler(), | |
RobustScaler(), | |
StackingEstimator(estimator=ExtraTreesClassifier(bootstrap=False, criterion="gini", max_features=0.35000000000000003, min_samples_leaf=17, min_samples_split=6, n_estimators=100)), | |
StackingEstimator(estimator=BernoulliNB(alpha=1.0, fit_prior=False)), | |
RobustScaler(), | |
ExtraTreesClassifier(bootstrap=False, criterion="entropy", max_features=0.55, min_samples_leaf=6, min_samples_split=19, n_estimators=100)) | |
exported_pipeline.fit(training_features, training_target) | |
results = exported_pipeline.predict(testing_features) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment