Created
July 30, 2019 04:28
-
-
Save kperry2215/278e35a6cf9cd0cb0ca4f73fdff1b4b7 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import eia | |
import pandas as pd | |
def retrieve_time_series(api, series_ID): | |
""" | |
Return the time series dataframe, based on API and unique Series ID | |
api: API that we're connected to | |
series_ID: string. Name of the series that we want to pull from the EIA API | |
""" | |
#Retrieve Data By Series ID | |
series_search = api.data_by_series(series=series_ID) | |
##Create a pandas dataframe from the retrieved time series | |
df = pd.DataFrame(series_search) | |
return df | |
#####Main block | |
#Create EIA API using your specific API key | |
api_key = 'd5c759bbe26b1a70f495e4aecadcf684' | |
api = eia.API(api_key) | |
#Pull the electricity price data | |
series_ID='EBA.TEX-ALL.D.H' | |
electricity_demand_df=retrieve_time_series(api, series_ID) | |
electricity_demand_df.reset_index(level=0, inplace=True) | |
#Rename the columns for easer analysis | |
electricity_demand_df.rename(columns={'index':'Date_Time', | |
electricity_demand_df.columns[1]:'Electricity_Demand_MWh'}, | |
inplace=True) | |
#Format the 'Date' column | |
electricity_demand_df['Date_Time']=electricity_demand_df['Date_Time'].astype(str).str[:-4] | |
#Remove the 'T' from the Date column | |
electricity_demand_df['Date_Time'] = electricity_demand_df['Date_Time'].str.replace('T' , ' ') | |
#Convert the Date column into a date object | |
electricity_demand_df['Date_Time']=pd.to_datetime(electricity_demand_df['Date_Time'], format='%Y %m%d %H') | |
#Plot the data on a yearly basis, using 2019 as an example year | |
plot_data(df=electricity_demand_df[(electricity_demand_df['Date_Time']>=pd.to_datetime('2019-01-01')) & | |
(electricity_demand_df['Date_Time']<pd.to_datetime('2020-01-01'))], | |
x_variable='Date_Time', | |
y_variable='Electricity_Demand_MWh', | |
title='TX Electricity Demand: 2019') | |
#Plot the data on a monthly basis, using December 2017 as an example | |
plot_data(df=electricity_demand_df[(electricity_demand_df['Date_Time']>=pd.to_datetime('2017-12-01')) & | |
(electricity_demand_df['Date_Time']<pd.to_datetime('2018-01-01'))], | |
x_variable='Date_Time', | |
y_variable='Electricity_Demand_MWh', | |
title='TX Electricity Demand: December 2017') | |
#Plot the data on a weekly basis, using July 1-7, 2019 as an example | |
plot_data(df=electricity_demand_df[(electricity_demand_df['Date_Time']>=pd.to_datetime('2019-07-01')) & | |
(electricity_demand_df['Date_Time']<pd.to_datetime('2019-07-07'))], | |
x_variable='Date_Time', | |
y_variable='Electricity_Demand_MWh', | |
title='TX Electricity Demand: December 2017') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment