Skip to content

Instantly share code, notes, and snippets.

@kperry2215
Created August 24, 2019 00:22
Show Gist options
  • Save kperry2215/593626504507cf75978a31a447c23f59 to your computer and use it in GitHub Desktop.
Save kperry2215/593626504507cf75978a31a447c23f59 to your computer and use it in GitHub Desktop.
#Add in a couple anomalous data points for detection by the algorithm
anomaly_dictionary={80: 3.1,
200: 3,
333: 1,
600: 2.6,
710: 2.1,
890: 2.3,
1100: 1,
1211: 2.6,
1309: 2.3}
#Set default for Artificially_Generated_Anomaly column to 0
gasoline_price_df.loc[:,'Artificially_Generated_Anomaly']=0
#Create fake anomaly values based on anomaly_dictionary
for index, anomaly_value in anomaly_dictionary.items():
gasoline_price_df.loc[index,'Gasoline_Price']=anomaly_value
#Create a column to indicate Anomalies
gasoline_price_df.loc[index,'Artificially_Generated_Anomaly']=1
#Re-visualize data with artificially generated anomalies
scatterplot_with_color_coding(gasoline_price_df['Date'],
gasoline_price_df['Gasoline_Price'],
gasoline_price_df['Artificially_Generated_Anomaly'],
'Date',
'Gasoline Price (Dollars Per Gallon)',
'Gasoline Prices, Color-Coded on Real/Artificially Generated Data Points')
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment