Skip to content

Instantly share code, notes, and snippets.

@kperry2215
Created July 30, 2019 22:12
Show Gist options
  • Save kperry2215/a98103f36e6850438f9722a32f6dd192 to your computer and use it in GitHub Desktop.
Save kperry2215/a98103f36e6850438f9722a32f6dd192 to your computer and use it in GitHub Desktop.
def plot_data(df, x_variable, y_variable, title):
"""
Plot the x- and y- variables against each other, where the variables are columns in
a pandas dataframe
df: Pandas dataframe.
x_variable: String. Name of x-variable column
y_variable: String. Name of y-variable column
title: String. Desired title name
"""
fig, ax = plt.subplots()
ax.plot_date(df[x_variable],
df[y_variable], marker='', linestyle='-', label=y_variable)
fig.autofmt_xdate()
plt.title(title)
plt.show()
###Execute in main block
#Plot the data on a yearly basis, using 2019 as an example year
plot_data(
df=electricity_demand_df[(electricity_demand_df['Date_Time']>=pd.to_datetime('2019-01-01')) &
(electricity_demand_df['Date_Time']<pd.to_datetime('2020-01-01'))],
x_variable='Date_Time',
y_variable='Electricity_Demand_MWh',
title='TX Electricity Demand: 2019')
#Plot the data on a monthly basis, using January 2017 as an example
plot_data(df=electricity_demand_df[(electricity_demand_df['Date_Time']>=pd.to_datetime('2017-01-01')) &
(electricity_demand_df['Date_Time']<pd.to_datetime('2017-02-01'))],
x_variable='Date_Time',
y_variable='Electricity_Demand_MWh',
title='TX Electricity Demand: December 2017')
#Plot the data on a weekly basis, using July 1-7, 2019 as an example
plot_data(df=electricity_demand_df[(electricity_demand_df['Date_Time']>=pd.to_datetime('2019-07-01')) &
(electricity_demand_df['Date_Time']<pd.to_datetime('2019-07-07'))],
x_variable='Date_Time',
y_variable='Electricity_Demand_MWh',
title='TX Electricity Demand: December 2017')
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment