Skip to content

Instantly share code, notes, and snippets.

@kperry2215
Created January 4, 2020 23:42
Show Gist options
  • Save kperry2215/c6c5012c2ba287054067aed2c4326d8d to your computer and use it in GitHub Desktop.
Save kperry2215/c6c5012c2ba287054067aed2c4326d8d to your computer and use it in GitHub Desktop.
def plot_results(mean_predicted_values, confidence_interval_predicted_values, time_series):
"""
This function plots actual time series data against SARIMA model-predicted values.
We include the confidence interval for the predictions.
Args:
mean_predicted_values: Series of float values. The model-predicted values.
confidence_interval_predicted_values: Pandas dataframe, containing the lower and
upper confidence intervals.
time_series: Series of float values. Actual time series values that we want to graph
Outputs:
None. Plot of the time series values, as well as the predicted values and associated
confidence interval.
"""
ax = time_series.plot(label='Observed')
mean_predicted_values.plot(ax=ax, label = 'Forecast', alpha=.7, figsize=(14, 4))
ax.fill_between(confidence_interval_predicted_values.index,
confidence_interval_predicted_values.iloc[:, 0],
confidence_interval_predicted_values.iloc[:, 1], color='k', alpha=.2)
ax.set_xlabel('Date Index')
ax.set_ylabel('Value')
plt.legend()
plt.show()
### EXECUTE IN MAIN FUNCTION ###
#Plot the predictions against the real data
plot_results(mean_predicted_values,
confidence_interval_predicted_values,
df['Geothermal_net_generation'][400:])
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment