You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
\tkzDefMidPoint(A,B) \tkzGetPoint{M}
\tkzDefBarycentricPoint(A=1,B=2) \tkzGetPoint{M}
\tkzCentroid(A,B,C) \tkzGetPoint{G}
\tkzDefTriangleCenter[centroid](A,B,C) \tkzGetPoint{G}% same as tkzCentroid
By transformation
\tkzDefPointsBy[translation=from A to B](M,N){K,L}
\tkzDefPointsBy[homothety=center A ratio .5](M,N){K,L}
\tkzDefPointsBy[reflection=over A--B](M,N){K,L}
\tkzDefPointsBy[symmetry=center A](M,N){K,L}
\tkzDefPointsBy[projection=onto A--B](M,N){K,L}
\tkzDefPointsBy[rotation=center O angle 30](M,N){K,L}
By vector relation
\tkzDefPointWith[linear normed](A,B) \tkzGetPoint{K}
\tkzDefPointWith[orthogonal normed](A,B) \tkzGetPoint{K}
\tkzDefPointWith[linear,K=.5](A,M) \tkzGetPoint{K} % <=> By homothety\tkzDefPointWith[colinear= at M](A,B) \tkzGetPoint{K} % <=> By translation\tkzDefPointWith[orthogonal,K=-1](A,B) \tkzGetPoint{K} % <=> By rotation\tkzDefSquare(A,B) \tkzGetPoints{K}{L}
Third vertex of a triangle
\tkzDefTriangle[two angles= 30 and 40](A,B) \tkzGetPoint{C}
\tkzDefTriangle[equilateral](A,B) \tkzGetPoint{C}
By intersection
\tkzInterLL(A,B)(O,C) \tkzGetPoint{D} % two lines\tkzInterLC(A,B)(O,C) \tkzGetPoints{D}{E} % line and circle\tkzInterLC[R](A,B)(O,4 cm) \tkzGetFirstPoint{I1}\tkzGetSecondPoint{I2} % line and circle with radius\tkzInterCC(A,B)(B,A) \tkzGetPoints{C}{D} % two circles
By tangence
\tkzDefTangent[at=A](O) \tkzGetPoint{t} % t is a point on the tangent line at A to the circle with center O\tkzDefTangent[from = B](O,A) \tkzGetPoints{S}{T} % (BS) and (BT) are tangent lines to the circle with center O passing through A\tkzDefTangent[from with R = B](O,35 mm) \tkzGetFirstPoint{S} % (BS) is tangent line to the circle with center O and radious 35mm
\tkzDefTriangleCenter[centroid](A,B,C)\tkzGetPoint{G} % G is the barycenter\tkzDefTriangleCenter[orthic](A,B,C)\tkzGetPoint{H} % H is the orthocenter\tkzDefTriangleCenter[in](A,B,C)\tkzGetPoint{I} % I is the center of the inscribed circle
\tkzDrawPolygon[color=red](A,B,C)
\tkzFillPolygon[color = green](A,B,C)
\tkzDrawSegments(A,B C,D)
\tkzDrawLine[add= 1 and -.2](A,B)
\tkzDrawLines(A,B C,D) % idem \tkzDrawSegments[add .2 and .2]
Special lines
\tkzDrawLine[median](A,C,B) % draw the medial from C to [AB]\tkzDrawLine[altitude, red](A,C,B) % draw the altitude from C to [AB]\tkzDrawLine[bisector, blue](A,C,B) % draw the bisector of ACB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters