Created
April 5, 2022 21:08
-
-
Save kratsg/6317d270987f357a3b15d68e5a3c5cdb to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pyhf | |
import numpy as np | |
spec = { | |
"channels": [ | |
{ | |
"name": "ch", | |
"samples": [ | |
{ | |
"data": [100.0,100.0], | |
"modifiers": [ | |
{"data": None, "name": "mu_sig", "type": "normfactor"}, | |
{"data": {"hi_data": [200,0], "lo_data": [0,200]}, "name": "np_1", "type": "histosys"}, | |
{"data": {"hi_data": [200,0], "lo_data": [0,200]}, "name": "np_2", "type": "histosys"}, | |
# normsys setup: uncomment the two lines below, comment out the two lines above | |
{"data": {"hi": 1.10, "lo": 0.90}, "name": "np_1", "type": "normsys"}, | |
{"data": {"hi": 1.10, "lo": 0.90}, "name": "np_2", "type": "normsys"}, | |
], | |
"name": "signal", | |
}, | |
{ | |
"data": [100.0,100.0], | |
"modifiers": [ | |
#{"data": None, "name": "mu_sig", "type": "normfactor"}, | |
#{"data": {"hi_data": [175], "lo_data": [25.0]}, "name": "np_1", "type": "histosys"}, | |
#{"data": {"hi_data": [175], "lo_data": [25.0]}, "name": "np_2", "type": "histosys"}, | |
# normsys setup: uncomment the two lines below, comment out the two lines above | |
{"data": {"hi": 1.01, "lo": 0.99}, "name": "np_bkg_1", "type": "normsys"}, | |
#{"data": {"hi": 1.75, "lo": 0.25}, "name": "np_2", "type": "normsys"}, | |
], | |
"name": "background", | |
} | |
], | |
} | |
], | |
"measurements": [{"config": {"parameters": [], "poi": "mu_sig"}, "name": "meas"}], | |
"observations": [{"data": [115,90], "name": "ch"}], | |
"version": "1.0.0", | |
} | |
spec2 = { | |
"channels": [ | |
{ | |
"name": "ch", | |
"samples": [ | |
{ | |
"data": [100.0,100.0], | |
"modifiers": [ | |
{"data": None, "name": "mu_sig", "type": "normfactor"}, | |
{"data": {"hi_data": [220,0], "lo_data": [0,180]}, "name": "np_1", "type": "histosys"}, | |
{"data": {"hi_data": [220,0], "lo_data": [0,180]}, "name": "np_2", "type": "histosys"}, | |
# normsys setup: uncomment the two lines below, comment out the two lines above | |
#{"data": {"hi": 1.10, "lo": 0.90}, "name": "np_1", "type": "normsys"}, | |
#{"data": {"hi": 1.10, "lo": 0.90}, "name": "np_2", "type": "normsys"}, | |
], | |
"name": "signal", | |
}, | |
{ | |
"data": [100.0,100.0], | |
"modifiers": [ | |
#{"data": None, "name": "mu_sig", "type": "normfactor"}, | |
#{"data": {"hi_data": [175], "lo_data": [25.0]}, "name": "np_1", "type": "histosys"}, | |
#{"data": {"hi_data": [175], "lo_data": [25.0]}, "name": "np_2", "type": "histosys"}, | |
# normsys setup: uncomment the two lines below, comment out the two lines above | |
{"data": {"hi": 1.01, "lo": 0.99}, "name": "np_bkg_1", "type": "normsys"}, | |
#{"data": {"hi": 1.75, "lo": 0.25}, "name": "np_2", "type": "normsys"}, | |
], | |
"name": "background", | |
} | |
], | |
} | |
], | |
"measurements": [{"config": {"parameters": [], "poi": "mu_sig"}, "name": "meas"}], | |
"observations": [{"data": [115,90], "name": "ch"}], | |
"version": "1.0.0", | |
} | |
def inspect_it(spec): | |
ws = pyhf.Workspace(spec) | |
model = ws.model() | |
data = ws.data(model) | |
print("data ", data) | |
print(f"model.config.par_order: {model.config.par_order}") | |
bestfit_pars, twice_nll = pyhf.infer.mle.fit(data, model, return_fitted_val=True) | |
print(f"bestfit_pars {bestfit_pars}") | |
bf_mu0 = np.asarray(bestfit_pars).copy() | |
bf_mu0[model.config.poi_index] = 0 | |
yields = model.expected_actualdata(model.config.suggested_init()) | |
yields_mle = model.expected_actualdata(bestfit_pars) | |
yields_poiZero = model.expected_actualdata(bf_mu0) | |
print(f"yields {yields}",) | |
print(f"background yields {yields_poiZero}") | |
print(f"signal yields {yields_mle}") | |
print(f"difference in yields {yields_mle - yields_poiZero}") | |
print("-"*20) | |
inspect_it(spec) | |
inspect_it(spec2) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment