Created
February 25, 2023 13:23
-
-
Save kratsg/675e2c46aecbf399bd4e6095c4738d72 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# -*- coding: utf-8 -*-, | |
# __future__ imports must occur at beginning of file | |
# redirect python output using the newer print function with file description | |
# print(string, f=fd) | |
from __future__ import print_function | |
# import the rest of the stuff | |
import argparse | |
import os | |
import sys | |
import csv | |
import collections | |
import json | |
def get_scaleFactor(weights, did): | |
weight = weights.get(did, None) | |
if weight is None: | |
return 1.0 | |
scaleFactor = 1.0 | |
cutflow = weight.get('num events') | |
if cutflow == 0: | |
raise ValueError('Num events = 0!') | |
scaleFactor /= cutflow | |
scaleFactor *= weight.get('cross section', 1.0) | |
scaleFactor *= weight.get('filter efficiency', 1.0) | |
scaleFactor *= weight.get('k-factor', 1.0) | |
return scaleFactor | |
if __name__ == "__main__": | |
# if we want multiple custom formatters, use inheriting | |
class CustomFormatter(argparse.ArgumentDefaultsHelpFormatter): | |
pass | |
parser = argparse.ArgumentParser(description='Convert from the txt outputs to an output json combining all information', | |
usage='\033[93m%(prog)s\033[0m files [options]', | |
formatter_class=lambda prog: CustomFormatter(prog, max_help_position=30)) | |
parser.add_argument('files', type=str, nargs='+', help='Files to Convert') | |
parser.add_argument('--analysis', type=str, required=True, help='Name of the analysis to strip off') | |
parser.add_argument('--weights', metavar='weights.json', type=str, help='Weights file to weight all weighted and errs by') | |
args = parser.parse_args() | |
yields = collections.defaultdict(lambda: collections.defaultdict(lambda: collections.defaultdict(float))) | |
weights = {} | |
if args.weights: | |
weights = json.load(file(args.weights)) | |
header_map = {"events": "raw", "acceptance": "weighted", "err": "err"} | |
for fname in args.files: | |
did = os.path.splitext(os.path.basename(fname))[0] | |
sf = get_scaleFactor(weights, did) | |
print("Reading in DID#{0:s} with SF {1:20.10f}".format(did, sf)) | |
with open(fname, 'r') as csvfile: | |
reader = csv.reader(csvfile) | |
headers = next(reader) | |
headers[0] = None | |
for row in reader: | |
region = None | |
for h, v in zip(headers, row): | |
#if region in ['All']: continue | |
if h is None: | |
region = v.replace('{0:s}__'.format(args.analysis),'') | |
print(h,'|', v, '|', region) | |
else: | |
val = float(v) | |
if header_map[h] in ['weighted', 'err']: | |
val*= sf | |
yields[region][did][header_map[h]] += val | |
with open('truth_dids.json', 'w+') as outfile: | |
json.dump(yields, outfile, sort_keys=True, indent=4) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment