Created
November 3, 2022 17:06
-
-
Save kratsg/6a275a9dbdeda57a4f7545145ef714ba to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import onnx | |
import onnxruntime | |
import uproot | |
import h5py | |
import json | |
model="./SimpleAnalysisCodes/data/ThreeBjets_NN_2020_model.onnx" | |
session = onnxruntime.InferenceSession(model, None) | |
input_name = session.get_inputs()[0].name | |
output_name = session.get_outputs()[0].name | |
with open("./SimpleAnalysisCodes/data/ThreeBjets_NN_2020_config.json") as fp: | |
config = json.load(fp) | |
branches = config['branches'] | |
parameters = np.array([tuple(item.values()) for item in config['parameters']]) | |
nparameters = parameters.shape[0] | |
mean = np.array(config['normalization']['mean']) | |
std = np.array(config['normalization']['stddev']) | |
with uproot.open("./ThreeBjets_NN_2020.root") as fp: | |
for chunk in fp['ntuple'].iterate(expressions=branches[:-3], library="np", how=tuple): | |
step_size = len(chunk[0]) | |
for parameter in parameters: | |
isGtt, mGluino, mLSP = parameter | |
intermediate = np.tile(parameter, [step_size, 1]) | |
data = np.concatenate([np.stack(chunk).T, intermediate], axis=1) | |
data -= mean | |
data /= std | |
result = session.run([output_name], {input_name: data.astype('float32')})[0] | |
# make a mask for only events we record information for | |
mask = chunk[0] == 0 | |
result_py = result[~mask] | |
NNbranch = f'NNoutput_{isGtt:d}_{mGluino:d}_{mLSP:d}' | |
result_cpp = np.array(fp['ntuple'][NNbranch].array()[~mask], dtype='float32') | |
match = np.allclose(result_py, result_cpp) | |
print(f'For {NNbranch}, do the results match?: {match}') | |
if not match: | |
isclose = np.isclose(result_py, result_cpp) | |
print(f' - {np.argwhere(~isclose)}') | |
indices = np.where(~isclose) | |
print(f' - py: {result_py[indices]}') | |
print(f' - cpp: {result_cpp[indices]}') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment