Last active
January 19, 2018 20:07
-
-
Save krinkere/16839de55e325e898e5d3a81ca8d7dce to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from scipy import stats | |
import matplotlib.pyplot as plt | |
import matplotlib.font_manager | |
from sklearn import svm | |
from sklearn.covariance import EllipticEnvelope | |
from sklearn.ensemble import IsolationForest | |
from sklearn.neighbors import LocalOutlierFactor | |
print(__doc__) | |
rng = np.random.RandomState(42) | |
# Example settings | |
n_samples = 200 | |
outliers_fraction = 0.25 | |
clusters_separation = [0, 1, 2] | |
# define two outlier detection tools to be compared | |
classifiers = { | |
"One-Class SVM": svm.OneClassSVM(nu=0.95 * outliers_fraction + 0.05, | |
kernel="rbf", gamma=0.1), | |
"Robust covariance": EllipticEnvelope(contamination=outliers_fraction), | |
"Isolation Forest": IsolationForest(max_samples=n_samples, | |
contamination=outliers_fraction, | |
random_state=rng), | |
"Local Outlier Factor": LocalOutlierFactor( | |
n_neighbors=35, | |
contamination=outliers_fraction)} | |
# Compare given classifiers under given settings | |
xx, yy = np.meshgrid(np.linspace(-7, 7, 100), np.linspace(-7, 7, 100)) | |
n_inliers = int((1. - outliers_fraction) * n_samples) | |
n_outliers = int(outliers_fraction * n_samples) | |
ground_truth = np.ones(n_samples, dtype=int) | |
ground_truth[-n_outliers:] = -1 | |
# Fit the problem with varying cluster separation | |
for i, offset in enumerate(clusters_separation): | |
np.random.seed(42) | |
# Data generation | |
X1 = 0.3 * np.random.randn(n_inliers // 2, 2) - offset | |
X2 = 0.3 * np.random.randn(n_inliers // 2, 2) + offset | |
X = np.r_[X1, X2] | |
# Add outliers | |
X = np.r_[X, np.random.uniform(low=-6, high=6, size=(n_outliers, 2))] | |
# Fit the model | |
plt.figure(figsize=(9, 7)) | |
for i, (clf_name, clf) in enumerate(classifiers.items()): | |
# fit the data and tag outliers | |
if clf_name == "Local Outlier Factor": | |
y_pred = clf.fit_predict(X) | |
scores_pred = clf.negative_outlier_factor_ | |
else: | |
clf.fit(X) | |
scores_pred = clf.decision_function(X) | |
y_pred = clf.predict(X) | |
threshold = stats.scoreatpercentile(scores_pred, | |
100 * outliers_fraction) | |
n_errors = (y_pred != ground_truth).sum() | |
# plot the levels lines and the points | |
if clf_name == "Local Outlier Factor": | |
# decision_function is private for LOF | |
Z = clf._decision_function(np.c_[xx.ravel(), yy.ravel()]) | |
else: | |
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) | |
Z = Z.reshape(xx.shape) | |
subplot = plt.subplot(2, 2, i + 1) | |
subplot.contourf(xx, yy, Z, levels=np.linspace(Z.min(), threshold, 7), | |
cmap=plt.cm.Blues_r) | |
a = subplot.contour(xx, yy, Z, levels=[threshold], | |
linewidths=2, colors='red') | |
subplot.contourf(xx, yy, Z, levels=[threshold, Z.max()], | |
colors='orange') | |
b = subplot.scatter(X[:-n_outliers, 0], X[:-n_outliers, 1], c='white', | |
s=20, edgecolor='k') | |
c = subplot.scatter(X[-n_outliers:, 0], X[-n_outliers:, 1], c='black', | |
s=20, edgecolor='k') | |
subplot.axis('tight') | |
subplot.legend( | |
[a.collections[0], b, c], | |
['learned decision function', 'true inliers', 'true outliers'], | |
prop=matplotlib.font_manager.FontProperties(size=10), | |
loc='lower right') | |
subplot.set_xlabel("%d. %s (errors: %d)" % (i + 1, clf_name, n_errors)) | |
subplot.set_xlim((-7, 7)) | |
subplot.set_ylim((-7, 7)) | |
plt.subplots_adjust(0.04, 0.1, 0.96, 0.94, 0.1, 0.26) | |
plt.suptitle("Outlier detection") | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment