Created
January 18, 2018 15:00
-
-
Save krinkere/dfdc3247e06b6880fccb95e8fc79015b to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
import matplotlib.font_manager | |
from sklearn import svm | |
# Generate train data | |
X = 0.3 * np.random.randn(100, 2) | |
X_train = np.r_[X + 2, X - 2] | |
# Generate some regular novel observations | |
X = 0.3 * np.random.randn(20, 2) | |
X_test = np.r_[X + 2, X - 2] | |
# Generate some abnormal novel observations | |
X_outliers = np.random.uniform(low=-4, high=4, size=(20, 2)) | |
# fit the model | |
clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1) | |
clf.fit(X_train) | |
y_pred_train = clf.predict(X_train) | |
y_pred_test = clf.predict(X_test) | |
y_pred_outliers = clf.predict(X_outliers) | |
n_error_train = y_pred_train[y_pred_train == -1].size | |
n_error_test = y_pred_test[y_pred_test == -1].size | |
n_error_outliers = y_pred_outliers[y_pred_outliers == 1].size | |
# plot the line, the points, and the nearest vectors to the plane | |
xx, yy = np.meshgrid(np.linspace(-5, 5, 500), np.linspace(-5, 5, 500)) | |
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) | |
Z = Z.reshape(xx.shape) | |
plt.title("Novelty Detection") | |
plt.contourf(xx, yy, Z, levels=np.linspace(Z.min(), 0, 7), cmap=plt.cm.Blues_r) | |
a = plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors='red') | |
plt.contourf(xx, yy, Z, levels=[0, Z.max()], colors='orange') | |
b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white') | |
b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='green') | |
c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c='red') | |
plt.axis('tight') | |
plt.xlim((-5, 5)) | |
plt.ylim((-5, 5)) | |
plt.legend([a.collections[0], b1, b2, c], | |
["learned frontier", "training observations", | |
"new regular observations", "new abnormal observations"], | |
loc="upper left", | |
prop=matplotlib.font_manager.FontProperties(size=11)) | |
plt.xlabel( | |
"error train: %d/200 ; errors novel regular: %d/40 ; " | |
"errors novel abnormal: %d/40" | |
% (n_error_train, n_error_test, n_error_outliers)) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment