Created
January 30, 2019 09:35
-
-
Save kris-singh/51b71df87da0d21eac14080c7132daa2 to your computer and use it in GitHub Desktop.
CrudeImplementation.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torchvision import datasets, transforms | |
def backward_hook_function(grad_out): | |
print(grad_out.shape) | |
print(grad_out.norm()) | |
# print("grad_norm", grad_in.norm()) | |
class DummyModel(nn.Module): | |
def __init__(self, input_size, hidden_size1, hidden_size2, num_classes): | |
super(DummyModel, self).__init__() | |
self.layer1 = nn.Linear(input_size, hidden_size1) | |
self.layer2 = nn.Linear(hidden_size1, hidden_size2) | |
self.out_layer = nn.Linear(hidden_size2, num_classes) | |
def forward(self, x): | |
x = F.relu(self.layer1(x)) | |
x = F.relu(self.layer2(x)) | |
out = F.log_softmax(self.out_layer(x), dim=1) | |
return out | |
def train(model, dataset, device, criterion): | |
for module in model.children(): | |
if isinstance(module, (nn.Linear, nn.Conv2d)): | |
for params in module.parameters(): | |
params.register_hook(backward_hook_function) | |
for key, (data, target) in enumerate(dataset): | |
data = data.to(device) | |
labels = target.to(device) | |
data = data.view(1, -1) | |
output = model(data) | |
loss = criterion(output, labels) | |
loss.backward() | |
break | |
def main(): | |
use_cuda = torch.cuda.is_available() | |
device = torch.device("cuda" if use_cuda else "cpu") | |
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} | |
train_loader = torch.utils.data.DataLoader( | |
datasets.MNIST('public_data', train=True, download=True, | |
transform=transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize((0.1307,), (0.3081,)) | |
])), | |
batch_size=1, shuffle=True, **kwargs) | |
model = DummyModel(784, 512, 128, 10).to(device) | |
criterion = F.nll_loss | |
train(model, train_loader, device, criterion) | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment