Created
November 28, 2016 20:14
-
-
Save krishpop/5c0f26cfe558bea732137e7266fa6da4 to your computer and use it in GitHub Desktop.
Contractive Autoencoder (http://deeplearning.net/tutorial/code/cA.py)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
"""This tutorial introduces Contractive auto-encoders (cA) using Theano. | |
They are based on auto-encoders as the ones used in Bengio et | |
al. 2007. An autoencoder takes an input x and first maps it to a | |
hidden representation y = f_{\theta}(x) = s(Wx+b), parameterized by | |
\theta={W,b}. The resulting latent representation y is then mapped | |
back to a "reconstructed" vector z \in [0,1]^d in input space z = | |
g_{\theta'}(y) = s(W'y + b'). The weight matrix W' can optionally be | |
constrained such that W' = W^T, in which case the autoencoder is said | |
to have tied weights. The network is trained such that to minimize | |
the reconstruction error (the error between x and z). Adding the | |
squared Frobenius norm of the Jacobian of the hidden mapping h with | |
respect to the visible units yields the contractive auto-encoder: | |
- \sum_{k=1}^d[ x_k \log z_k + (1-x_k) \log( 1-z_k)] | |
+ \| \frac{\partial h(x)}{\partial x} \|^2 | |
References : | |
- S. Rifai, P. Vincent, X. Muller, X. Glorot, Y. Bengio: Contractive | |
Auto-Encoders: Explicit Invariance During Feature Extraction, ICML-11 | |
- S. Rifai, X. Muller, X. Glorot, G. Mesnil, Y. Bengio, and Pascal | |
Vincent. Learning invariant features through local space | |
contraction. Technical Report 1360, Universite de Montreal | |
- Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle: Greedy Layer-Wise | |
Training of Deep Networks, Advances in Neural Information Processing | |
Systems 19, 2007 | |
""" | |
from __future__ import print_function | |
import os | |
import sys | |
import timeit | |
import numpy | |
import theano | |
import theano.tensor as T | |
from logistic_sgd import load_data | |
from utils import tile_raster_images | |
try: | |
import PIL.Image as Image | |
except ImportError: | |
import Image | |
class cA(object): | |
""" Contractive Auto-Encoder class (cA) | |
The contractive autoencoder tries to reconstruct the input with an | |
additional constraint on the latent space. With the objective of | |
obtaining a robust representation of the input space, we | |
regularize the L2 norm(Froebenius) of the jacobian of the hidden | |
representation with respect to the input. Please refer to Rifai et | |
al.,2011 for more details. | |
If x is the input then equation (1) computes the projection of the | |
input into the latent space h. Equation (2) computes the jacobian | |
of h with respect to x. Equation (3) computes the reconstruction | |
of the input, while equation (4) computes the reconstruction | |
error and the added regularization term from Eq.(2). | |
.. math:: | |
h_i = s(W_i x + b_i) (1) | |
J_i = h_i (1 - h_i) * W_i (2) | |
x' = s(W' h + b') (3) | |
L = -sum_{k=1}^d [x_k \log x'_k + (1-x_k) \log( 1-x'_k)] | |
+ lambda * sum_{i=1}^d sum_{j=1}^n J_{ij}^2 (4) | |
""" | |
def __init__(self, numpy_rng, input=None, n_visible=784, n_hidden=100, | |
n_batchsize=1, W=None, bhid=None, bvis=None): | |
"""Initialize the cA class by specifying the number of visible units | |
(the dimension d of the input), the number of hidden units (the | |
dimension d' of the latent or hidden space) and the contraction level. | |
The constructor also receives symbolic variables for the input, weights | |
and bias. | |
:type numpy_rng: numpy.random.RandomState | |
:param numpy_rng: number random generator used to generate weights | |
:type theano_rng: theano.tensor.shared_randomstreams.RandomStreams | |
:param theano_rng: Theano random generator; if None is given | |
one is generated based on a seed drawn from `rng` | |
:type input: theano.tensor.TensorType | |
:param input: a symbolic description of the input or None for | |
standalone cA | |
:type n_visible: int | |
:param n_visible: number of visible units | |
:type n_hidden: int | |
:param n_hidden: number of hidden units | |
:type n_batchsize int | |
:param n_batchsize: number of examples per batch | |
:type W: theano.tensor.TensorType | |
:param W: Theano variable pointing to a set of weights that should be | |
shared belong the dA and another architecture; if dA should | |
be standalone set this to None | |
:type bhid: theano.tensor.TensorType | |
:param bhid: Theano variable pointing to a set of biases values (for | |
hidden units) that should be shared belong dA and another | |
architecture; if dA should be standalone set this to None | |
:type bvis: theano.tensor.TensorType | |
:param bvis: Theano variable pointing to a set of biases values (for | |
visible units) that should be shared belong dA and another | |
architecture; if dA should be standalone set this to None | |
""" | |
self.n_visible = n_visible | |
self.n_hidden = n_hidden | |
self.n_batchsize = n_batchsize | |
# note : W' was written as `W_prime` and b' as `b_prime` | |
if not W: | |
# W is initialized with `initial_W` which is uniformely sampled | |
# from -4*sqrt(6./(n_visible+n_hidden)) and | |
# 4*sqrt(6./(n_hidden+n_visible))the output of uniform if | |
# converted using asarray to dtype | |
# theano.config.floatX so that the code is runable on GPU | |
initial_W = numpy.asarray( | |
numpy_rng.uniform( | |
low=-4 * numpy.sqrt(6. / (n_hidden + n_visible)), | |
high=4 * numpy.sqrt(6. / (n_hidden + n_visible)), | |
size=(n_visible, n_hidden) | |
), | |
dtype=theano.config.floatX | |
) | |
W = theano.shared(value=initial_W, name='W', borrow=True) | |
if not bvis: | |
bvis = theano.shared(value=numpy.zeros(n_visible, | |
dtype=theano.config.floatX), | |
borrow=True) | |
if not bhid: | |
bhid = theano.shared(value=numpy.zeros(n_hidden, | |
dtype=theano.config.floatX), | |
name='b', | |
borrow=True) | |
self.W = W | |
# b corresponds to the bias of the hidden | |
self.b = bhid | |
# b_prime corresponds to the bias of the visible | |
self.b_prime = bvis | |
# tied weights, therefore W_prime is W transpose | |
self.W_prime = self.W.T | |
# if no input is given, generate a variable representing the input | |
if input is None: | |
# we use a matrix because we expect a minibatch of several | |
# examples, each example being a row | |
self.x = T.dmatrix(name='input') | |
else: | |
self.x = input | |
self.params = [self.W, self.b, self.b_prime] | |
def get_hidden_values(self, input): | |
""" Computes the values of the hidden layer """ | |
return T.nnet.sigmoid(T.dot(input, self.W) + self.b) | |
def get_jacobian(self, hidden, W): | |
"""Computes the jacobian of the hidden layer with respect to | |
the input, reshapes are necessary for broadcasting the | |
element-wise product on the right axis | |
""" | |
return T.reshape(hidden * (1 - hidden), | |
(self.n_batchsize, 1, self.n_hidden)) * T.reshape( | |
W, (1, self.n_visible, self.n_hidden)) | |
def get_reconstructed_input(self, hidden): | |
"""Computes the reconstructed input given the values of the | |
hidden layer | |
""" | |
return T.nnet.sigmoid(T.dot(hidden, self.W_prime) + self.b_prime) | |
def get_cost_updates(self, contraction_level, learning_rate): | |
""" This function computes the cost and the updates for one trainng | |
step of the cA """ | |
y = self.get_hidden_values(self.x) | |
z = self.get_reconstructed_input(y) | |
J = self.get_jacobian(y, self.W) | |
# note : we sum over the size of a datapoint; if we are using | |
# minibatches, L will be a vector, with one entry per | |
# example in minibatch | |
self.L_rec = - T.sum(self.x * T.log(z) + | |
(1 - self.x) * T.log(1 - z), | |
axis=1) | |
# Compute the jacobian and average over the number of samples/minibatch | |
self.L_jacob = T.sum(J ** 2) // self.n_batchsize | |
# note : L is now a vector, where each element is the | |
# cross-entropy cost of the reconstruction of the | |
# corresponding example of the minibatch. We need to | |
# compute the average of all these to get the cost of | |
# the minibatch | |
cost = T.mean(self.L_rec) + contraction_level * T.mean(self.L_jacob) | |
# compute the gradients of the cost of the `cA` with respect | |
# to its parameters | |
gparams = T.grad(cost, self.params) | |
# generate the list of updates | |
updates = [] | |
for param, gparam in zip(self.params, gparams): | |
updates.append((param, param - learning_rate * gparam)) | |
return (cost, updates) | |
def test_cA(learning_rate=0.01, training_epochs=20, | |
dataset='mnist.pkl.gz', | |
batch_size=10, output_folder='cA_plots', contraction_level=.1): | |
""" | |
This demo is tested on MNIST | |
:type learning_rate: float | |
:param learning_rate: learning rate used for training the contracting | |
AutoEncoder | |
:type training_epochs: int | |
:param training_epochs: number of epochs used for training | |
:type dataset: string | |
:param dataset: path to the picked dataset | |
""" | |
datasets = load_data(dataset) | |
train_set_x, train_set_y = datasets[0] | |
# compute number of minibatches for training, validation and testing | |
n_train_batches = train_set_x.get_value(borrow=True).shape[0] // batch_size | |
# allocate symbolic variables for the data | |
index = T.lscalar() # index to a [mini]batch | |
x = T.matrix('x') # the data is presented as rasterized images | |
if not os.path.isdir(output_folder): | |
os.makedirs(output_folder) | |
os.chdir(output_folder) | |
#################################### | |
# BUILDING THE MODEL # | |
#################################### | |
rng = numpy.random.RandomState(123) | |
ca = cA(numpy_rng=rng, input=x, | |
n_visible=28 * 28, n_hidden=500, n_batchsize=batch_size) | |
cost, updates = ca.get_cost_updates(contraction_level=contraction_level, | |
learning_rate=learning_rate) | |
train_ca = theano.function( | |
[index], | |
[T.mean(ca.L_rec), ca.L_jacob], | |
updates=updates, | |
givens={ | |
x: train_set_x[index * batch_size: (index + 1) * batch_size] | |
} | |
) | |
start_time = timeit.default_timer() | |
############ | |
# TRAINING # | |
############ | |
# go through training epochs | |
for epoch in range(training_epochs): | |
# go through trainng set | |
c = [] | |
for batch_index in range(n_train_batches): | |
c.append(train_ca(batch_index)) | |
c_array = numpy.vstack(c) | |
print('Training epoch %d, reconstruction cost ' % epoch, numpy.mean( | |
c_array[0]), ' jacobian norm ', numpy.mean(numpy.sqrt(c_array[1]))) | |
end_time = timeit.default_timer() | |
training_time = (end_time - start_time) | |
print(('The code for file ' + os.path.split(__file__)[1] + | |
' ran for %.2fm' % ((training_time) / 60.)), file=sys.stderr) | |
image = Image.fromarray(tile_raster_images( | |
X=ca.W.get_value(borrow=True).T, | |
img_shape=(28, 28), tile_shape=(10, 10), | |
tile_spacing=(1, 1))) | |
image.save('cae_filters.png') | |
os.chdir('../') | |
if __name__ == '__main__': | |
test_cA() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment