Last active
December 11, 2020 21:40
-
-
Save kristiewirth/ba9f86517dae8b980b3b9592376b5762 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import re | |
import numpy as np | |
from langdetect import detect | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.metrics.pairwise import linear_kernel | |
from toolz.functoolz import pipe | |
def find_non_sentences(sentences: list, nlp): | |
non_sentences = [] | |
for sentence in sentences: | |
spacy_text = nlp(sentence.strip()) | |
verb_count = np.sum( | |
[ | |
( | |
token.pos_ == "VERB" | |
or token.pos_ == "AUX" | |
or token.pos_ == "ROOT" | |
or token.pos_ == "pcomp" | |
) | |
for token in spacy_text | |
] | |
) | |
try: | |
prob = float(verb_count) / len(spacy_text) | |
except Exception: | |
prob = 1.0 | |
# If __% or less of a sentence is verbs, it's probably not a real sentence | |
if prob <= 0.05: | |
non_sentences.append(sentence) | |
return non_sentences | |
def clean_text(df): | |
df["cleaned_body"] = [ | |
str(row) | |
# Remove strange encoding | |
.encode("ascii", errors="ignore").decode().lower() | |
# Remove replied to emails | |
.split("> wrote:")[0] | |
# Remove text populated from contact form | |
.split("what do you need help with")[0] | |
# Remove signatures | |
.split("thanks,")[0].split("regards,")[0] | |
for row in df["body"] | |
] | |
# Remove HTML tags | |
df["cleaned_body"] = [re.sub("<.*?>", "", row) for row in df["cleaned_body"]] | |
return df | |
def drop_ineligible_tickets(df): | |
ineligible = [ | |
"trial", | |
"extend", | |
"refund", | |
"charge", | |
] | |
df = df[~df["cleaned_body"].str.contains("|".join(ineligible), na=False)] | |
return df | |
def drop_rows_low_word_count(df): | |
df["word_count"] = df["cleaned_body"].apply( | |
lambda x: len(str(x).strip().split(" ")) | |
) | |
tickets_no_low_word_count = df[df["word_count"] >= 3] | |
return tickets_no_low_word_count | |
def detect_with_exception(row): | |
""" | |
Adding exception to this existing function so that .apply doesn't error out | |
""" | |
try: | |
language = detect(row) | |
except Exception: | |
language = "unknown" | |
return language | |
def remove_non_english_tickets(df): | |
df["language"] = df["cleaned_body"].apply(lambda x: detect_with_exception(str(x))) | |
tickets_only_english = df[df["language"] == "en"] | |
return tickets_only_english | |
def save_historical_data(df): | |
cleaned_df = pipe( | |
df, | |
clean_text, | |
drop_ineligible_tickets, | |
drop_rows_low_word_count, | |
remove_non_english_tickets, | |
) | |
save_to_s3(cleaned_df) | |
def vectorize_save_historical_data(df): | |
vectorizer = TfidfVectorizer( | |
tokenizer=ct.lematize, | |
ngram_range=(1, 3), | |
stop_words=all_stop_words, | |
min_df=2, | |
max_df=0.4, | |
) | |
vectors = vectorizer.fit_transform(df["cleaned_body"]) | |
save_to_s3(vectorizer) | |
save_to_s3(vectors) | |
def vectorize_get_similarities_one_incoming_ticket( | |
incoming_ticket, vectors_past_tickets, saved_vectorizer | |
): | |
vectors = saved_vectorizer.transform(incoming_ticket["cleaned_body"]) | |
cos_sims = linear_kernel(vectors, vectors_past_tickets) | |
return cos_sims | |
def get_most_similar_ticket(incoming_ticket, cos_sims, past_tickets, past_responses): | |
cos_sims_indices_descending = (-cos_sims).argsort() | |
cos_sims_values_descending = -np.sort(-cos_sims, axis=1) | |
incoming_ticket["most_similar"] = [ | |
past_tickets["cleaned_body"].iloc[x[0]] | |
for x in cos_sims_indices_descending[:, 0 : 0 + 1] | |
] | |
incoming_ticket["most_similar_conv_id"] = [ | |
past_tickets["conv_id"].iloc[x[0]] | |
for x in cos_sims_indices_descending[:, 0 : 0 + 1] | |
] | |
incoming_ticket["most_similar_score"] = [x[0] for x in cos_sims_values_descending] | |
incoming_ticket["most_similar_response"] = [ | |
" ".join(past_responses[past_responses["conv_id"] == value]["body"].values) | |
for value in incoming_ticket["most_similar_conv_id"] | |
] | |
return incoming_ticket |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment