Created
May 16, 2015 23:51
-
-
Save krzkaczor/0bdba0ee9555659ae5fe to your computer and use it in GitHub Desktop.
Fast modular exponentiation in Java Script
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** | |
* Fast modular exponentiation for a ^ b mod n | |
* @returns {number} | |
*/ | |
var fastModularExponentiation = function(a, b, n) { | |
a = a % n; | |
var result = 1; | |
var x = a; | |
while(b > 0){ | |
var leastSignificantBit = b % 2; | |
b = Math.floor(b / 2); | |
if (leastSignificantBit == 1) { | |
result = result * x; | |
result = result % n; | |
} | |
x = x * x; | |
x = x % n; | |
} | |
return result; | |
}; | |
var assert = function(actual, expected){ | |
if (actual != expected){ | |
throw new Error('Assertion failed'); | |
} | |
}; | |
assert(fastModularExponentiation(12, 53, 7), 3); | |
assert(fastModularExponentiation(7, 12, 10), 1); | |
assert(fastModularExponentiation(3, 51, 13), 1); |
thanks!
The function does not give the expected answer in the following function to solve question 48 of Project Euler, which is to find the last 10 digits of sum(n^n) for n = 1 to 1000:
let sum = 0;
const digit_window = 10**10;
for(let i = 1;i<=1000;i++){
sum = (sum + mexp(i,i,digit_window)) % digit_window
}
console.log(sum);
9110846700 is expected but 6621474085 is yielded.
@devildelta that is because Javascript uses a floating point representation for numbers, in general you should not use Javascript for large arithmetic.
@y-richie-y @devildelta Now that chrome and node.js support BigInt
natively, you can use javascript as well.
Simply append an n
to every number literal to use BigInt:
const modExp = function (a, b, n) {
a = a % n;
var result = 1n;
var x = a;
while (b > 0) {
var leastSignificantBit = b % 2n;
b = b / 2n;
if (leastSignificantBit == 1n) {
result = result * x;
result = result % n;
}
x = x * x;
x = x % n;
}
return result;
};
let sum = 0n;
const digit_window = 10n**10n;
for(let i = 1n;i<=1000n;i++){
sum = (sum + modExp(i,i,digit_window)) % digit_window
}
console.log(sum);
// 9110846700n
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Thanks so much! Used it in my RSA Implementation