-
-
Save krzysztofantczak/cb3291f0619a7c95ec72643d9c1b90ac to your computer and use it in GitHub Desktop.
Savitzky Golay filter from http://www.scipy.org/Cookbook/SavitzkyGolay
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import scipy, scipy.signal | |
def fftconvolve(in1, in2, mode="full"): | |
"""Convolve two N-dimensional arrays using FFT. | |
Convolve `in1` and `in2` using the fast Fourier transform method, with | |
the output size determined by the `mode` argument. | |
This is generally much faster than `convolve` for large arrays (n > ~500), | |
but can be slower when only a few output values are needed, and can only | |
output float arrays (int or object array inputs will be cast to float). | |
As of v0.19, `convolve` automatically chooses this method or the direct | |
method based on an estimation of which is faster. | |
Parameters | |
---------- | |
in1 : array_like | |
First input. | |
in2 : array_like | |
Second input. Should have the same number of dimensions as `in1`. | |
If operating in 'valid' mode, either `in1` or `in2` must be | |
at least as large as the other in every dimension. | |
mode : str {'full', 'valid', 'same'}, optional | |
A string indicating the size of the output: | |
``full`` | |
The output is the full discrete linear convolution | |
of the inputs. (Default) | |
``valid`` | |
The output consists only of those elements that do not | |
rely on the zero-padding. | |
``same`` | |
The output is the same size as `in1`, centered | |
with respect to the 'full' output. | |
Returns | |
------- | |
out : array | |
An N-dimensional array containing a subset of the discrete linear | |
convolution of `in1` with `in2`. | |
""" | |
in1 = asarray(in1) | |
in2 = asarray(in2) | |
if in1.ndim == in2.ndim == 0: # scalar inputs | |
return in1 * in2 | |
elif not in1.ndim == in2.ndim: | |
raise ValueError("in1 and in2 should have the same dimensionality") | |
elif in1.size == 0 or in2.size == 0: # empty arrays | |
return array([]) | |
s1 = array(in1.shape) | |
s2 = array(in2.shape) | |
complex_result = (np.issubdtype(in1.dtype, np.complexfloating) or | |
np.issubdtype(in2.dtype, np.complexfloating)) | |
shape = s1 + s2 - 1 | |
# Check that input sizes are compatible with 'valid' mode | |
if _inputs_swap_needed(mode, s1, s2): | |
# Convolution is commutative; order doesn't have any effect on output | |
in1, s1, in2, s2 = in2, s2, in1, s1 | |
# Speed up FFT by padding to optimal size for FFTPACK | |
fshape = [fftpack.helper.next_fast_len(int(d)) for d in shape] | |
fslice = tuple([slice(0, int(sz)) for sz in shape]) | |
# Pre-1.9 NumPy FFT routines are not threadsafe. For older NumPys, make | |
# sure we only call rfftn/irfftn from one thread at a time. | |
if not complex_result and (_rfft_mt_safe or _rfft_lock.acquire(False)): | |
try: | |
sp1 = np.fft.rfftn(in1, fshape) | |
sp2 = np.fft.rfftn(in2, fshape) | |
ret = (np.fft.irfftn(sp1 * sp2, fshape)[fslice].copy()) | |
finally: | |
if not _rfft_mt_safe: | |
_rfft_lock.release() | |
else: | |
# If we're here, it's either because we need a complex result, or we | |
# failed to acquire _rfft_lock (meaning rfftn isn't threadsafe and | |
# is already in use by another thread). In either case, use the | |
# (threadsafe but slower) SciPy complex-FFT routines instead. | |
sp1 = fftpack.fftn(in1, fshape) | |
sp2 = fftpack.fftn(in2, fshape) | |
ret = fftpack.ifftn(sp1 * sp2)[fslice].copy() | |
if not complex_result: | |
ret = ret.real | |
if mode == "full": | |
return ret | |
elif mode == "same": | |
return _centered(ret, s1) | |
elif mode == "valid": | |
return _centered(ret, s1 - s2 + 1) | |
else: | |
raise ValueError("Acceptable mode flags are 'valid'," | |
" 'same', or 'full'.") | |
def savitzky_golay( y, window_size, order, deriv = 0 ): | |
r"""Smooth (and optionally differentiate) data with a Savitzky-Golay filter. | |
The Savitzky-Golay filter removes high frequency noise from data. | |
It has the advantage of preserving the original shape and | |
features of the signal better than other types of filtering | |
approaches, such as moving averages techhniques. | |
Parameters | |
---------- | |
y : array_like, shape (N,) | |
the values of the time history of the signal. | |
window_size : int | |
the length of the window. Must be an odd integer number. | |
order : int | |
the order of the polynomial used in the filtering. | |
Must be less then `window_size` - 1. | |
deriv: int | |
the order of the derivative to compute (default = 0 means only smoothing) | |
Returns | |
------- | |
ys : ndarray, shape (N) | |
the smoothed signal (or it's n-th derivative). | |
Notes | |
----- | |
The Savitzky-Golay is a type of low-pass filter, particularly | |
suited for smoothing noisy data. The main idea behind this | |
approach is to make for each point a least-square fit with a | |
polynomial of high order over a odd-sized window centered at | |
the point. | |
Examples | |
-------- | |
t = np.linspace(-4, 4, 500) | |
y = np.exp( -t**2 ) + np.random.normal(0, 0.05, t.shape) | |
ysg = savitzky_golay(y, window_size=31, order=4) | |
import matplotlib.pyplot as plt | |
plt.plot(t, y, label='Noisy signal') | |
plt.plot(t, np.exp(-t**2), 'k', lw=1.5, label='Original signal') | |
plt.plot(t, ysg, 'r', label='Filtered signal') | |
plt.legend() | |
plt.show() | |
References | |
---------- | |
.. [1] A. Savitzky, M. J. E. Golay, Smoothing and Differentiation of | |
Data by Simplified Least Squares Procedures. Analytical | |
Chemistry, 1964, 36 (8), pp 1627-1639. | |
.. [2] Numerical Recipes 3rd Edition: The Art of Scientific Computing | |
W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery | |
Cambridge University Press ISBN-13: 9780521880688 | |
""" | |
try: | |
window_size = np.abs( np.int( window_size ) ) | |
order = np.abs( np.int( order ) ) | |
except ValueError, msg: | |
raise ValueError( "window_size and order have to be of type int" ) | |
if window_size % 2 != 1 or window_size < 1: | |
raise TypeError( "window_size size must be a positive odd number" ) | |
if window_size < order + 2: | |
raise TypeError( "window_size is too small for the polynomials order" ) | |
order_range = range( order + 1 ) | |
half_window = ( window_size - 1 ) // 2 | |
# precompute coefficients | |
b = np.mat( [[k ** i for i in order_range] for k in range( -half_window, half_window + 1 )] ) | |
m = np.linalg.pinv( b ).A[deriv] | |
# pad the signal at the extremes with | |
# values taken from the signal itself | |
firstvals = y[0] - np.abs( y[1:half_window + 1][::-1] - y[0] ) | |
lastvals = y[-1] + np.abs( y[-half_window - 1:-1][::-1] - y[-1] ) | |
y = np.concatenate( ( firstvals, y, lastvals ) ) | |
return np.convolve( m, y, mode = 'valid' ) | |
def savitzky_golay_piecewise( xvals, data, kernel = 11, order = 4 ): | |
turnpoint = 0 | |
last = len( xvals ) | |
if xvals[1] > xvals[0] : #x is increasing? | |
for i in range( 1, last ) : #yes | |
if xvals[i] < xvals[i - 1] : #search where x starts to fall | |
turnpoint = i | |
break | |
else: #no, x is decreasing | |
for i in range( 1, last ) : #search where it starts to rise | |
if xvals[i] > xvals[i - 1] : | |
turnpoint = i | |
break | |
if turnpoint == 0 : #no change in direction of x | |
return savitzky_golay( data, kernel, order ) | |
else: | |
#smooth the first piece | |
firstpart = savitzky_golay( data[0:turnpoint], kernel, order ) | |
#recursively smooth the rest | |
rest = savitzky_golay_piecewise( xvals[turnpoint:], data[turnpoint:], kernel, order ) | |
return numpy.concatenate( ( firstpart, rest ) ) | |
def sgolay2d ( z, window_size, order, derivative = None ): | |
""" | |
""" | |
# number of terms in the polynomial expression | |
n_terms = ( order + 1 ) * ( order + 2 ) / 2.0 | |
if window_size % 2 == 0: | |
raise ValueError( 'window_size must be odd' ) | |
if window_size ** 2 < n_terms: | |
raise ValueError( 'order is too high for the window size' ) | |
half_size = window_size // 2 | |
# exponents of the polynomial. | |
# p(x,y) = a0 + a1*x + a2*y + a3*x^2 + a4*y^2 + a5*x*y + ... | |
# this line gives a list of two item tuple. Each tuple contains | |
# the exponents of the k-th term. First element of tuple is for x | |
# second element for y. | |
# Ex. exps = [(0,0), (1,0), (0,1), (2,0), (1,1), (0,2), ...] | |
exps = [ ( k - n, n ) for k in range( order + 1 ) for n in range( k + 1 ) ] | |
# coordinates of points | |
ind = np.arange( -half_size, half_size + 1, dtype = np.float64 ) | |
dx = np.repeat( ind, window_size ) | |
dy = np.tile( ind, [window_size, 1] ).reshape( window_size ** 2, ) | |
# build matrix of system of equation | |
A = np.empty( ( window_size ** 2, len( exps ) ) ) | |
for i, exp in enumerate( exps ): | |
A[:, i] = ( dx ** exp[0] ) * ( dy ** exp[1] ) | |
# pad input array with appropriate values at the four borders | |
new_shape = z.shape[0] + 2 * half_size, z.shape[1] + 2 * half_size | |
Z = np.zeros( ( new_shape ) ) | |
# top band | |
band = z[0, :] | |
Z[:half_size, half_size:-half_size] = band - np.abs( np.flipud( z[1:half_size + 1, :] ) - band ) | |
# bottom band | |
band = z[-1, :] | |
Z[-half_size:, half_size:-half_size] = band + np.abs( np.flipud( z[-half_size - 1:-1, :] ) - band ) | |
# left band | |
band = np.tile( z[:, 0].reshape( -1, 1 ), [1, half_size] ) | |
Z[half_size:-half_size, :half_size] = band - np.abs( np.fliplr( z[:, 1:half_size + 1] ) - band ) | |
# right band | |
band = np.tile( z[:, -1].reshape( -1, 1 ), [1, half_size] ) | |
Z[half_size:-half_size, -half_size:] = band + np.abs( np.fliplr( z[:, -half_size - 1:-1] ) - band ) | |
# central band | |
Z[half_size:-half_size, half_size:-half_size] = z | |
# top left corner | |
band = z[0, 0] | |
Z[:half_size, :half_size] = band - np.abs( np.flipud( np.fliplr( z[1:half_size + 1, 1:half_size + 1] ) ) - band ) | |
# bottom right corner | |
band = z[-1, -1] | |
Z[-half_size:, -half_size:] = band + np.abs( np.flipud( np.fliplr( z[-half_size - 1:-1, -half_size - 1:-1] ) ) - band ) | |
# top right corner | |
band = Z[half_size, -half_size:] | |
Z[:half_size, -half_size:] = band - np.abs( np.flipud( Z[half_size + 1:2 * half_size + 1, -half_size:] ) - band ) | |
# bottom left corner | |
band = Z[-half_size:, half_size].reshape( -1, 1 ) | |
Z[-half_size:, :half_size] = band - np.abs( np.fliplr( Z[-half_size:, half_size + 1:2 * half_size + 1] ) - band ) | |
# solve system and convolve | |
if derivative == None: | |
m = np.linalg.pinv( A )[0].reshape( ( window_size, -1 ) ) | |
return scipy.signal.fftconvolve( Z, m, mode = 'valid' ) | |
elif derivative == 'col': | |
c = np.linalg.pinv( A )[1].reshape( ( window_size, -1 ) ) | |
return scipy.signal.fftconvolve( Z, -c, mode = 'valid' ) | |
elif derivative == 'row': | |
r = np.linalg.pinv( A )[2].reshape( ( window_size, -1 ) ) | |
return scipy.signal.fftconvolve( Z, -r, mode = 'valid' ) | |
elif derivative == 'both': | |
c = np.linalg.pinv( A )[1].reshape( ( window_size, -1 ) ) | |
r = np.linalg.pinv( A )[2].reshape( ( window_size, -1 ) ) | |
return scipy.signal.fftconvolve( Z, -r, mode = 'valid' ), scipy.signal.fftconvolve( Z, -c, mode = 'valid' ) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment