Skip to content

Instantly share code, notes, and snippets.

@kshirsagarsiddharth
Last active March 20, 2022 18:18
Show Gist options
  • Save kshirsagarsiddharth/4b8030351cb7e11690afdc2ae1a1eecc to your computer and use it in GitHub Desktop.
Save kshirsagarsiddharth/4b8030351cb7e11690afdc2ae1a1eecc to your computer and use it in GitHub Desktop.
fdd7
def transform_columns(transformer,columns_to_transform,X_train = X_train,X_valid = X_valid,):
cols_train = pd.DataFrame(transformer.fit_transform(X_train[columns_to_transform]))
cols_valid = pd.DataFrame(transformer.transform(X_valid[columns_to_transform]))
cols_train.index = X_train.index
cols_valid.index = X_valid.index
return cols_train, cols_valid
columns_to_transform_list = [ordered_columns, unordered_columns, numeric_columns]
ordinal_encoder = OrdinalEncoder()
onehot_encoder = OneHotEncoder(handle_unknown='ignore', sparse=False)
standard_scaler = StandardScaler()
transformers = [ordinal_encoder, onehot_encoder, standard_scaler]
encoded_train = []
encoded_validation = []
for columns_to_transform, transformer in zip(columns_to_transform_list, transformers):
print(columns_to_transform)
cols_train, cols_valid = transform_columns(transformer, columns_to_transform)
#print(cols_train)
encoded_train.append(cols_train)
encoded_validation.append(cols_valid)
encoded_X_train = pd.concat(encoded_train, axis = 1)
encoded_X_valid = pd.concat(encoded_validation, axis = 1)
########################################################################################
########################################################################################
['year', 'model']
['transmission', 'fuel_type']
Index(['km_traveled', 'tax', 'engineSize', 'km_per_liters'], dtype='object')
########################################################################################
########################################################################################
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment