Skip to content

Instantly share code, notes, and snippets.

@kshirsagarsiddharth
Created March 20, 2022 18:31
fdd10.py
from sklearn import set_config
set_config(display="diagram")
numeric_columns = X.select_dtypes(exclude='object').columns
numeric_transformer = Pipeline(steps = [("scalar", StandardScaler())])
unordered_columns =['transmission', 'fuel_type']
unordered_transformer = Pipeline(steps = [('onehot', OneHotEncoder(handle_unknown='ignore', sparse=False))])
ordered_columns = ['year', 'model']
ordered_transformer = Pipeline(steps = [('ordinal', OrdinalEncoder())])
preprocessor = ColumnTransformer(
transformers=[
('numeric_transformer', numeric_transformer, numeric_columns),
('unordered_transformer', unordered_transformer, unordered_columns),
('ordered_transformer', ordered_transformer, ordered_columns)
]
)
reg = Pipeline(
steps=[
('preprocessor', preprocessor),
('regressor', ElasticNet())
]
)
y = df['price']
X = df.drop('price', axis = 1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
reg.fit(X_train, y_train)
preds = reg.predict(X_test)
score = np.sqrt(mean_squared_error(y_test, preds))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment