Skip to content

Instantly share code, notes, and snippets.

View kshirsagarsiddharth's full-sized avatar
🎯
Focusing

kshirsagarsiddharth

🎯
Focusing
View GitHub Profile
def univariate_hist_with_hue(x = 'person_age', hue = 'person_income'):
plt.figure(dpi = 130)
sns.set_style('whitegrid')
return sns.kdeplot(x = x, data = df, fill=True, palette = 'crest', hue = hue).set_title('Univariate visualization of Quantative Variable with hue')
D = interact(univariate_hist_with_hue,
x = widgets.Dropdown(
options = ['person_age','person_income','person_emp_length','loan_amnt','loan_int_rate','loan_percent_income','cb_person_cred_hist_length']
),
hue = widgets.Dropdown(
def univariate_hist(x = 'person_age'):
plt.figure(dpi = 130)
sns.set_style('whitegrid')
return sns.kdeplot(x = x, data = df, fill=True, palette = 'crest').set_title('Univariate visualization of Quantative Variable')
C = interact(univariate_hist,
x = widgets.Dropdown(
options = ['person_age','person_income','person_emp_length','loan_amnt','loan_int_rate','loan_percent_income','cb_person_cred_hist_length']
)
)
def scatter_plot_int_with_hue(x = 'person_age',y = 'person_income', hue = 'loan_grade'):
plt.figure(dpi = 120)
sns.set_style('whitegrid')
return sns.scatterplot(data = df, x = x,y = y, alpha = 0.6, hue = hue, cmap = 'Set2').set_title('Visualize Relation Between 2 Quantative Variables with Hue')
B = interact(scatter_plot_int_with_hue,
x = widgets.Dropdown(
options = ['person_age','person_income','person_emp_length','loan_amnt','loan_int_rate','loan_percent_income','cb_person_cred_hist_length']
),
y = widgets.Dropdown(
def scatter_plot_int(x = 'person_age',y = 'person_income'):
plt.figure(dpi = 120)
sns.set_style('whitegrid')
return sns.scatterplot(data = df, x = x,y = y, alpha = 0.6, ).set_title('Visualize Relation Between 2 Quantative Variables')
A = interact(scatter_plot_int,
x = widgets.Dropdown(
options = ['person_age','person_income','person_emp_length','loan_amnt','loan_int_rate','loan_percent_income','cb_person_cred_hist_length']
),
y = widgets.Dropdown(
options = ['person_age','person_income','person_emp_length','loan_amnt','loan_int_rate','loan_percent_income','cb_person_cred_hist_length']
## Highliting losses in the dataframe
def color_negative_values(value):
"""
This function takes in values of dataframe
if particular value is negative it is colored as redwhich implies loss
if value is greater than one it implies higher profit
"""
if value < 0:
color = '#ff8a8a'
elif value > 1:
_ = interact(plot_histogram,
palette = widgets.Dropdown(
options = ['pastel','husl','Set2','flare','crest','magma','icefire']
),
kde = widgets.RadioButtons(
options = [True,False],
disabled = False),
hue = widgets.ToggleButtons(
options = ['categories','other categories'],
tooltip = ['categories','other categories'],
def plot_histogram(bins = 10, hue = 'categories', kde = False, palette = 'Blues', x_range_1 = (-3,3)):
"""plots histogram
params:
=======
bins: int
histogram bins
hue: str
categorical columns to color
kde: bool
wether to show kde plot
als = ALS(maxIter = 10 ,
userCol = "user_id",
itemCol = "isbn_indexed",
ratingCol = "book_rating",
nonnegative = True,
coldStartStrategy = 'drop')
from pyspark.ml.tuning import ParamGridBuilder,CrossValidator
grid = ParamGridBuilder().addGrid(als.rank, [10,30])\
.addGrid(als.regParam, [0.2,0.01,1,2])\
from pyspark.ml.recommendation import ALS
from pyspark.ml.evaluation import RegressionEvaluator
training, test = indexed.randomSplit([0.8,0.1])
als = ALS(maxIter = 10 ,
regParam = 0.9,
userCol = "user_id",
itemCol = "isbn_indexed",
ratingCol = "book_rating",
from pyspark.ml.recommendation import ALS
from pyspark.ml.evaluation import RegressionEvaluator
from pyspark.ml.feature import StringIndexer
indexer = StringIndexer(inputCol = "isbn", outputCol = "isbn_indexed")
indexed = indexer.fit(filtered_with_location).transform(filtered_with_location)\
.withColumn('isbn_indexed',F.col('isbn_indexed')\
.cast("int"))\
.drop('isbn')