Skip to content

Instantly share code, notes, and snippets.

View kshirsagarsiddharth's full-sized avatar
🎯
Focusing

kshirsagarsiddharth

🎯
Focusing
View GitHub Profile
X_train, X_test, y_train, y_test \
= train_test_split(X, y, test_size=0.1, random_state=1)
X_train, X_valid, y_train, y_valid \
= train_test_split(X_train, y_train, test_size=0.1, random_state=1)
X_train.shape, X_test.shape, X_valid.shape
((4131, 8), (511, 8), (459, 8))
from sqlalchemy import create_engine
engine = create_engine("sqlite:///car_prediction_dataset.sqlite3")
query = """
SELECT
year,
price,
km_traveled,
tax,
enginesize,
%%sql
results << SELECT
year,
price,
km_traveled,
tax,
enginesize,
km_per_liters,
mi.model,
transmission,
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
# find the distribution of website sessions in morning, afternoon, evening and night
%%sql
result <<
SELECT
CASE
WHEN HOUR(created_at) BETWEEN 7 AND 12 THEN 'morning'
WHEN HOUR(created_at) BETWEEN 12 AND 16 THEN 'afternoon'
WHEN HOUR(created_at) BETWEEN 16 AND 20 THEN 'evening'
ELSE 'night'
END AS divide,
# I have stored my credentials in a json file
import json
import pandas as pd
import plotly.express as px
with open("creds.json","r") as f:
creds = json.load(f)
# my username
user = creds['user']
# my password
password = creds['password']
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
A = interactive(scatter_plot_int,
x = widgets.Dropdown(
options = ['person_age','person_income','person_emp_length','loan_amnt','loan_int_rate','loan_percent_income','cb_person_cred_hist_length']
),
y = widgets.Dropdown(
options = ['person_age','person_income','person_emp_length','loan_amnt','loan_int_rate','loan_percent_income','cb_person_cred_hist_length']
)
)
B = interactive(scatter_plot_int_with_hue,
def interactive_crosstab(index = 'loan_grade', column = 'loan_intent'):
crosstab = pd.crosstab(df[index], df[column]).style.text_gradient(cmap = 'icefire').applymap(lambda x : 'font-size:22.2px; font-weight:bold')
return (crosstab.set_table_styles([
{
"selector":"thead",
"props": [("background-color", "#d0d0df"),
("color", "black"),
("font-size", "20px"), ("font-style", "bold")]
},
{
def visualize_pivot_tables(index = 'person_home_ownership', column = 'loan_grade', values = 'loan_amnt', axis = 0):
color_palette = sns.color_palette("vlag_r", as_cmap=True)
t = pd.pivot_table(data = df, index = index, columns = column, values = values)
return t.style.background_gradient(color_palette,axis = axis).applymap(lambda x : 'font-size:17.2px; font-weight:bold; opacity:0.9')
E = interact(visualize_pivot_tables,
index = widgets.Dropdown(
options = ['person_home_ownership', 'loan_intent', 'loan_grade','cb_person_default_on_file','loan_status']
),
column = widgets.Dropdown(