- Kurobako Version: 0.2.9
- Number of Solvers: 10
- Number of Problems: 4
- Metrics Precedence:
best value -> AUC
Please refer to "A Strategy for Ranking Optimizers using Multiple Criteria" for the ranking strategy used in this report.
Solver | Borda | Firsts |
---|---|---|
HaltonSampler_python | 13 | 3 |
MultivariateTPESampler_python | 15 | 3 |
RandomSampler_python | 17 | 2 |
SobolSampler_python | 14 | 2 |
_HaltonSampler_NopPruner | 0 | 0 |
_HaltonSampler_Scrambled_NopPruner | 0 | 0 |
_RandomSampler_NopPruner | 0 | 1 |
_SobolSampler_NopPruner | 3 | 0 |
_SobolSampler_Scrambled_NopPruner | 0 | 0 |
_TPESampler_NopPruner | 23 | 4 |
(1) Problem: HPO-Bench-Naval
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | _TPESampler_NopPruner (study) | 0.000033 +- 0.000004 | 0.016 +- 0.012 | 2.671 +- 0.147 |
1 | RandomSampler_python (study) | 0.000039 +- 0.000004 | 0.023 +- 0.030 | 33.599 +- 8.264 |
1 | SobolSampler_python (study) | 0.000040 +- 0.000012 | 0.013 +- 0.008 | 37.712 +- 6.227 |
1 | HaltonSampler_python (study) | 0.000039 +- 0.000004 | 0.016 +- 0.017 | 134.514 +- 30.717 |
1 | MultivariateTPESampler_python (study) | 0.000035 +- 0.000010 | 0.017 +- 0.015 | 37.450 +- 13.290 |
5 | _SobolSampler_NopPruner (study) | 0.000073 +- 0.000023 | 0.010 +- 0.005 | 0.290 +- 0.052 |
6 | _SobolSampler_Scrambled_NopPruner (study) | 0.000153 +- 0.000133 | 0.046 +- 0.034 | 0.397 +- 0.075 |
7 | _HaltonSampler_NopPruner (study) | 0.000191 +- 0.000065 | 0.056 +- 0.023 | 0.701 +- 0.053 |
7 | _RandomSampler_NopPruner (study) | 0.000119 +- 0.000045 | 0.181 +- 0.297 | 0.259 +- 0.020 |
7 | _HaltonSampler_Scrambled_NopPruner (study) | 0.000111 +- 0.000080 | 0.066 +- 0.030 | 1.175 +- 0.074 |
(2) Problem: HPO-Bench-Protein
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | _TPESampler_NopPruner (study) | 0.222292 +- 0.002021 | 21.134 +- 0.428 | 2.605 +- 0.179 |
1 | HaltonSampler_python (study) | 0.226486 +- 0.004012 | 21.406 +- 0.493 | 102.396 +- 27.754 |
1 | MultivariateTPESampler_python (study) | 0.223906 +- 0.001617 | 20.432 +- 0.223 | 33.468 +- 9.718 |
2 | SobolSampler_python (study) | 0.226720 +- 0.002389 | 21.020 +- 0.294 | 36.265 +- 4.905 |
3 | RandomSampler_python (study) | 0.227897 +- 0.003933 | 21.295 +- 0.381 | 31.543 +- 9.787 |
6 | _SobolSampler_NopPruner (study) | 0.260289 +- 0.008488 | 24.538 +- 0.540 | 0.331 +- 0.062 |
6 | _HaltonSampler_NopPruner (study) | 0.248409 +- 0.011858 | 23.322 +- 1.252 | 0.734 +- 0.088 |
6 | _RandomSampler_NopPruner (study) | 0.248280 +- 0.010261 | 24.022 +- 1.434 | 0.280 +- 0.063 |
6 | _HaltonSampler_Scrambled_NopPruner (study) | 0.251172 +- 0.012329 | 23.951 +- 1.071 | 1.225 +- 0.151 |
6 | _SobolSampler_Scrambled_NopPruner (study) | 0.255692 +- 0.014936 | 23.961 +- 1.532 | 0.396 +- 0.056 |
(3) Problem: HPO-Bench-Slice
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | _TPESampler_NopPruner (study) | 0.000195 +- 0.000028 | 0.035 +- 0.014 | 2.659 +- 0.129 |
2 | _SobolSampler_NopPruner (study) | 0.000413 +- 0.000139 | 0.047 +- 0.017 | 0.334 +- 0.076 |
2 | RandomSampler_python (study) | 0.000280 +- 0.000043 | 0.030 +- 0.005 | 36.207 +- 5.709 |
2 | SobolSampler_python (study) | 0.000279 +- 0.000025 | 0.032 +- 0.005 | 35.714 +- 5.751 |
2 | _HaltonSampler_Scrambled_NopPruner (study) | 0.000455 +- 0.000100 | 0.057 +- 0.018 | 1.200 +- 0.061 |
2 | HaltonSampler_python (study) | 0.000287 +- 0.000037 | 0.033 +- 0.006 | 142.358 +- 41.000 |
2 | MultivariateTPESampler_python (study) | 0.000348 +- 0.000162 | 0.037 +- 0.017 | 89.108 +- 56.204 |
4 | _HaltonSampler_NopPruner (study) | 0.000361 +- 0.000151 | 0.062 +- 0.011 | 0.691 +- 0.051 |
4 | _RandomSampler_NopPruner (study) | 0.000489 +- 0.000225 | 0.067 +- 0.035 | 0.275 +- 0.041 |
4 | _SobolSampler_Scrambled_NopPruner (study) | 0.000428 +- 0.000108 | 0.061 +- 0.022 | 0.390 +- 0.030 |
(4) Problem: HPO-Bench-Parkinson
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | _TPESampler_NopPruner (study) | 0.007222 +- 0.000917 | 1.195 +- 0.370 | 2.690 +- 0.153 |
1 | RandomSampler_python (study) | 0.008132 +- 0.001297 | 1.005 +- 0.095 | 36.225 +- 7.699 |
1 | SobolSampler_python (study) | 0.008786 +- 0.001459 | 1.064 +- 0.112 | 35.611 +- 7.648 |
1 | _RandomSampler_NopPruner (study) | 0.014599 +- 0.005903 | 1.809 +- 0.604 | 0.271 +- 0.031 |
1 | HaltonSampler_python (study) | 0.008858 +- 0.002006 | 1.019 +- 0.244 | 135.309 +- 28.645 |
1 | MultivariateTPESampler_python (study) | 0.008708 +- 0.002181 | 0.942 +- 0.188 | 65.705 +- 20.257 |
3 | _HaltonSampler_Scrambled_NopPruner (study) | 0.014808 +- 0.004116 | 1.703 +- 0.618 | 1.207 +- 0.094 |
5 | _SobolSampler_NopPruner (study) | 0.013613 +- 0.004276 | 1.594 +- 0.320 | 0.312 +- 0.053 |
5 | _SobolSampler_Scrambled_NopPruner (study) | 0.012196 +- 0.001934 | 1.660 +- 0.427 | 0.401 +- 0.050 |
6 | _HaltonSampler_NopPruner (study) | 0.015017 +- 0.005061 | 1.856 +- 0.478 | 0.709 +- 0.036 |
recipe:
{
"command": {
"path": "python3",
"args": [
"halton.py"
]
}
}
specification:
{
"name": "HaltonSampler_python",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.9.0.dev0, kurobako-py=0.1.12"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
}
recipe:
{
"command": {
"path": "python3",
"args": [
"tpe.py"
]
}
}
specification:
{
"name": "MultivariateTPESampler_python",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.9.0.dev0, kurobako-py=0.1.12"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
}
recipe:
{
"command": {
"path": "python3",
"args": [
"random_.py"
]
}
}
specification:
{
"name": "RandomSampler_python",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.9.0.dev0, kurobako-py=0.1.12"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
}
recipe:
{
"command": {
"path": "python3",
"args": [
"sobol.py"
]
}
}
specification:
{
"name": "SobolSampler_python",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.9.0.dev0, kurobako-py=0.1.12"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
}
recipe:
{
"name": "_HaltonSampler_NopPruner",
"optuna": {
"loglevel": "debug",
"sampler": "QMCSampler",
"sampler_kwargs": "{}",
"pruner": "NopPruner",
"pruner_kwargs": "{}"
}
}
specification:
{
"name": "_HaltonSampler_NopPruner",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.9.0.dev0, kurobako-py=0.1.12"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
}
recipe:
{
"name": "_HaltonSampler_Scrambled_NopPruner",
"optuna": {
"loglevel": "debug",
"sampler": "QMCSampler",
"sampler_kwargs": "{\"scramble\":true}",
"pruner": "NopPruner",
"pruner_kwargs": "{}"
}
}
specification:
{
"name": "_HaltonSampler_Scrambled_NopPruner",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.9.0.dev0, kurobako-py=0.1.12"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
}
recipe:
{
"name": "_RandomSampler_NopPruner",
"optuna": {
"loglevel": "debug",
"sampler": "RandomSampler",
"sampler_kwargs": "{}",
"pruner": "NopPruner",
"pruner_kwargs": "{}"
}
}
specification:
{
"name": "_RandomSampler_NopPruner",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.9.0.dev0, kurobako-py=0.1.12"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
}
recipe:
{
"name": "_SobolSampler_NopPruner",
"optuna": {
"loglevel": "debug",
"sampler": "QMCSampler",
"sampler_kwargs": "{\"qmc_type\":\"sobol\"}",
"pruner": "NopPruner",
"pruner_kwargs": "{}"
}
}
specification:
{
"name": "_SobolSampler_NopPruner",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.9.0.dev0, kurobako-py=0.1.12"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
}
recipe:
{
"name": "_SobolSampler_Scrambled_NopPruner",
"optuna": {
"loglevel": "debug",
"sampler": "QMCSampler",
"sampler_kwargs": "{\"scramble\":true,\"qmc_type\":\"sobol\"}",
"pruner": "NopPruner",
"pruner_kwargs": "{}"
}
}
specification:
{
"name": "_SobolSampler_Scrambled_NopPruner",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.9.0.dev0, kurobako-py=0.1.12"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
}
recipe:
{
"name": "_TPESampler_NopPruner",
"optuna": {
"loglevel": "debug",
"sampler": "TPESampler",
"sampler_kwargs": "{\"multivariate\":true,\"constant_liar\":true}",
"pruner": "NopPruner",
"pruner_kwargs": "{}"
}
}
specification:
{
"name": "_TPESampler_NopPruner",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.9.0.dev0, kurobako-py=0.1.12"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
}
recipe:
{
"hpobench": {
"dataset": "../data/fcnet_naval_propulsion_data.hdf5"
}
}
specification:
{
"name": "HPO-Bench-Naval",
"attrs": {
"github": "https://github.com/automl/nas_benchmarks",
"paper": "Klein, Aaron, and Frank Hutter. \"Tabular Benchmarks for Joint Architecture and Hyperparameter Optimization.\" arXiv preprint arXiv:1905.04970 (2019).",
"version": "kurobako_problems=0.1.13"
},
"params_domain": [
{
"name": "activation_fn_1",
"range": {
"type": "CATEGORICAL",
"choices": [
"tanh",
"relu"
]
},
"distribution": "UNIFORM"
},
{
"name": "activation_fn_2",
"range": {
"type": "CATEGORICAL",
"choices": [
"tanh",
"relu"
]
},
"distribution": "UNIFORM"
},
{
"name": "batch_size",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 4
},
"distribution": "UNIFORM"
},
{
"name": "dropout_1",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 3
},
"distribution": "UNIFORM"
},
{
"name": "dropout_2",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 3
},
"distribution": "UNIFORM"
},
{
"name": "init_lr",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 6
},
"distribution": "UNIFORM"
},
{
"name": "lr_schedule",
"range": {
"type": "CATEGORICAL",
"choices": [
"cosine",
"const"
]
},
"distribution": "UNIFORM"
},
{
"name": "n_units_1",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 6
},
"distribution": "UNIFORM"
},
{
"name": "n_units_2",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 6
},
"distribution": "UNIFORM"
}
],
"values_domain": [
{
"name": "Validation MSE",
"range": {
"type": "CONTINUOUS",
"low": 0.0
},
"distribution": "UNIFORM"
}
],
"steps": 100
}
recipe:
{
"hpobench": {
"dataset": "../data/fcnet_parkinsons_telemonitoring_data.hdf5"
}
}
specification:
{
"name": "HPO-Bench-Parkinson",
"attrs": {
"github": "https://github.com/automl/nas_benchmarks",
"paper": "Klein, Aaron, and Frank Hutter. \"Tabular Benchmarks for Joint Architecture and Hyperparameter Optimization.\" arXiv preprint arXiv:1905.04970 (2019).",
"version": "kurobako_problems=0.1.13"
},
"params_domain": [
{
"name": "activation_fn_1",
"range": {
"type": "CATEGORICAL",
"choices": [
"tanh",
"relu"
]
},
"distribution": "UNIFORM"
},
{
"name": "activation_fn_2",
"range": {
"type": "CATEGORICAL",
"choices": [
"tanh",
"relu"
]
},
"distribution": "UNIFORM"
},
{
"name": "batch_size",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 4
},
"distribution": "UNIFORM"
},
{
"name": "dropout_1",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 3
},
"distribution": "UNIFORM"
},
{
"name": "dropout_2",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 3
},
"distribution": "UNIFORM"
},
{
"name": "init_lr",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 6
},
"distribution": "UNIFORM"
},
{
"name": "lr_schedule",
"range": {
"type": "CATEGORICAL",
"choices": [
"cosine",
"const"
]
},
"distribution": "UNIFORM"
},
{
"name": "n_units_1",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 6
},
"distribution": "UNIFORM"
},
{
"name": "n_units_2",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 6
},
"distribution": "UNIFORM"
}
],
"values_domain": [
{
"name": "Validation MSE",
"range": {
"type": "CONTINUOUS",
"low": 0.0
},
"distribution": "UNIFORM"
}
],
"steps": 100
}
recipe:
{
"hpobench": {
"dataset": "../data/fcnet_protein_structure_data.hdf5"
}
}
specification:
{
"name": "HPO-Bench-Protein",
"attrs": {
"github": "https://github.com/automl/nas_benchmarks",
"paper": "Klein, Aaron, and Frank Hutter. \"Tabular Benchmarks for Joint Architecture and Hyperparameter Optimization.\" arXiv preprint arXiv:1905.04970 (2019).",
"version": "kurobako_problems=0.1.13"
},
"params_domain": [
{
"name": "activation_fn_1",
"range": {
"type": "CATEGORICAL",
"choices": [
"tanh",
"relu"
]
},
"distribution": "UNIFORM"
},
{
"name": "activation_fn_2",
"range": {
"type": "CATEGORICAL",
"choices": [
"tanh",
"relu"
]
},
"distribution": "UNIFORM"
},
{
"name": "batch_size",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 4
},
"distribution": "UNIFORM"
},
{
"name": "dropout_1",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 3
},
"distribution": "UNIFORM"
},
{
"name": "dropout_2",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 3
},
"distribution": "UNIFORM"
},
{
"name": "init_lr",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 6
},
"distribution": "UNIFORM"
},
{
"name": "lr_schedule",
"range": {
"type": "CATEGORICAL",
"choices": [
"cosine",
"const"
]
},
"distribution": "UNIFORM"
},
{
"name": "n_units_1",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 6
},
"distribution": "UNIFORM"
},
{
"name": "n_units_2",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 6
},
"distribution": "UNIFORM"
}
],
"values_domain": [
{
"name": "Validation MSE",
"range": {
"type": "CONTINUOUS",
"low": 0.0
},
"distribution": "UNIFORM"
}
],
"steps": 100
}
recipe:
{
"hpobench": {
"dataset": "../data/fcnet_slice_localization_data.hdf5"
}
}
specification:
{
"name": "HPO-Bench-Slice",
"attrs": {
"github": "https://github.com/automl/nas_benchmarks",
"paper": "Klein, Aaron, and Frank Hutter. \"Tabular Benchmarks for Joint Architecture and Hyperparameter Optimization.\" arXiv preprint arXiv:1905.04970 (2019).",
"version": "kurobako_problems=0.1.13"
},
"params_domain": [
{
"name": "activation_fn_1",
"range": {
"type": "CATEGORICAL",
"choices": [
"tanh",
"relu"
]
},
"distribution": "UNIFORM"
},
{
"name": "activation_fn_2",
"range": {
"type": "CATEGORICAL",
"choices": [
"tanh",
"relu"
]
},
"distribution": "UNIFORM"
},
{
"name": "batch_size",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 4
},
"distribution": "UNIFORM"
},
{
"name": "dropout_1",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 3
},
"distribution": "UNIFORM"
},
{
"name": "dropout_2",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 3
},
"distribution": "UNIFORM"
},
{
"name": "init_lr",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 6
},
"distribution": "UNIFORM"
},
{
"name": "lr_schedule",
"range": {
"type": "CATEGORICAL",
"choices": [
"cosine",
"const"
]
},
"distribution": "UNIFORM"
},
{
"name": "n_units_1",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 6
},
"distribution": "UNIFORM"
},
{
"name": "n_units_2",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 6
},
"distribution": "UNIFORM"
}
],
"values_domain": [
{
"name": "Validation MSE",
"range": {
"type": "CONTINUOUS",
"low": 0.0
},
"distribution": "UNIFORM"
}
],
"steps": 100
}
- problem: HPO-Bench-Naval
- solver: HaltonSampler_python
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Naval
- solver: MultivariateTPESampler_python
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Naval
- solver: RandomSampler_python
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Naval
- solver: SobolSampler_python
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Naval
- solver: _HaltonSampler_NopPruner
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Naval
- solver: _HaltonSampler_Scrambled_NopPruner
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Naval
- solver: _RandomSampler_NopPruner
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Naval
- solver: _SobolSampler_NopPruner
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Naval
- solver: _SobolSampler_Scrambled_NopPruner
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Naval
- solver: _TPESampler_NopPruner
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Parkinson
- solver: HaltonSampler_python
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Parkinson
- solver: MultivariateTPESampler_python
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Parkinson
- solver: RandomSampler_python
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Parkinson
- solver: SobolSampler_python
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Parkinson
- solver: _HaltonSampler_NopPruner
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Parkinson
- solver: _HaltonSampler_Scrambled_NopPruner
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Parkinson
- solver: _RandomSampler_NopPruner
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Parkinson
- solver: _SobolSampler_NopPruner
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Parkinson
- solver: _SobolSampler_Scrambled_NopPruner
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Parkinson
- solver: _TPESampler_NopPruner
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Protein
- solver: HaltonSampler_python
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Protein
- solver: MultivariateTPESampler_python
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Protein
- solver: RandomSampler_python
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Protein
- solver: SobolSampler_python
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Protein
- solver: _HaltonSampler_NopPruner
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Protein
- solver: _HaltonSampler_Scrambled_NopPruner
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Protein
- solver: _RandomSampler_NopPruner
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Protein
- solver: _SobolSampler_NopPruner
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Protein
- solver: _SobolSampler_Scrambled_NopPruner
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Protein
- solver: _TPESampler_NopPruner
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Slice
- solver: HaltonSampler_python
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Slice
- solver: MultivariateTPESampler_python
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Slice
- solver: RandomSampler_python
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Slice
- solver: SobolSampler_python
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Slice
- solver: _HaltonSampler_NopPruner
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Slice
- solver: _HaltonSampler_Scrambled_NopPruner
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Slice
- solver: _RandomSampler_NopPruner
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Slice
- solver: _SobolSampler_NopPruner
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Slice
- solver: _SobolSampler_Scrambled_NopPruner
- budget: 100
- repeats: 10
- concurrency: 1
- problem: HPO-Bench-Slice
- solver: _TPESampler_NopPruner
- budget: 100
- repeats: 10
- concurrency: 1