Last active
April 17, 2021 14:09
-
-
Save kstoneriv3/8cc5d25656dd0bb090c22a3a603a1a3e to your computer and use it in GitHub Desktop.
(Incomplete) Reproduction of image denoising using kernel PCA in "Learning to Find Pre-Images"
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy | |
import scipy.ndimage | |
import matplotlib.pyplot as plt | |
from sklearn import datasets | |
from sklearn import decomposition | |
digits = datasets.load_digits() | |
images = digits.images | |
images = map(lambda x: scipy.ndimage.zoom(x, 2, order=1), images) | |
d = 2 * 8 | |
X_by_digits = [[] for i in range(10)] | |
for x, i in zip(images, digits.target): | |
X_by_digits[i].append(x) | |
X_train = numpy.concatenate([X[:10] for X in X_by_digits]) | |
X_test_without_noise = numpy.concatenate([X[10:20] for X in X_by_digits]) | |
X_test = X_test_without_noise + 11 * numpy.random.randn(100 * d * d).reshape(100, d, d) | |
X_test = numpy.clip(X_test, 0, 16) | |
kpca = decomposition.KernelPCA(n_components=10, fit_inverse_transform=True, alpha=1) | |
kpca.fit(X_train.reshape(-1, d * d)) | |
X_trans = kpca.transform(X_test.reshape(-1, d * d)) | |
X_rec = kpca.inverse_transform(X_trans).reshape(-1, d, d) | |
plt.figure(figsize=(24, 8)) | |
for i, x in enumerate(X_test_without_noise): | |
col, row = 1 + i % 10, 1 + i // 10 | |
plt.subplot(10, 32, col + 32 * (row - 1)) | |
plt.imshow(x, cmap=plt.cm.gray_r) | |
plt.axis('off') | |
for i, x in enumerate(X_test): | |
col, row = 12 + i % 10, 1 + i // 10 | |
plt.subplot(10, 32, col + 32 * (row - 1)) | |
plt.imshow(x, cmap=plt.cm.gray_r) | |
plt.axis('off') | |
for i, x in enumerate(X_rec): | |
col, row = 23 + i % 10, 1 + i // 10 | |
plt.subplot(10, 32, col + 32 * (row - 1)) | |
plt.imshow(x, cmap=plt.cm.gray_r) | |
plt.axis('off') | |
plt.suptitle("Test images before adding noise (left), test images (middle), and reconstruction of test images (right)") | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment