Created
May 9, 2015 10:10
-
-
Save ktisha/95fcee0ed79236c7e6e5 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy | |
from PIL import Image | |
def scale_to_unit_interval(ndar, eps=1e-8): | |
ndar = ndar.copy() | |
ndar -= ndar.min() | |
ndar *= 1.0 / (ndar.max() + eps) | |
return ndar | |
def tile_raster_images(X, img_shape, tile_shape, tile_spacing=(0, 0), | |
scale_rows_to_unit_interval=True, | |
output_pixel_vals=True): | |
assert len(img_shape) == 2 | |
assert len(tile_shape) == 2 | |
assert len(tile_spacing) == 2 | |
out_shape = [(ishp + tsp) * tshp - tsp for ishp, tshp, tsp | |
in zip(img_shape, tile_shape, tile_spacing)] | |
H, W = img_shape | |
Hs, Ws = tile_spacing | |
dt = X.dtype | |
if output_pixel_vals: | |
dt = 'uint8' | |
out_array = numpy.zeros(out_shape, dtype=dt) | |
for tile_row in range(tile_shape[0]): | |
for tile_col in range(tile_shape[1]): | |
if tile_row * tile_shape[1] + tile_col < X.shape[0]: | |
this_x = X[tile_row * tile_shape[1] + tile_col] | |
if scale_rows_to_unit_interval: | |
this_img = scale_to_unit_interval( | |
this_x.reshape(img_shape)) | |
else: | |
this_img = this_x.reshape(img_shape) | |
c = 1 | |
if output_pixel_vals: | |
c = 255 | |
out_array[ | |
tile_row * (H + Hs): tile_row * (H + Hs) + H, | |
tile_col * (W + Ws): tile_col * (W + Ws) + W | |
] = this_img * c | |
return out_array | |
def visualize_mnist(train_X): | |
images = train_X[0:2500, :] | |
image_data = tile_raster_images(images, | |
img_shape=[28,28], | |
tile_shape=[50,50], | |
tile_spacing=(2,2)) | |
im_new = Image.fromarray(numpy.uint8(image_data)) | |
im_new.save('mnist.png') | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment