Last active
August 29, 2015 14:17
-
-
Save ktisha/ae995b7b553db26316f9 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from matplotlib.mlab import find | |
import numpy as np | |
import matplotlib.pyplot as pl | |
def visualize(clf, X, y): | |
border = .5 | |
h = .02 | |
x_min, x_max = X[:, 0].min() - border, X[:, 0].max() + border | |
y_min, y_max = X[:, 1].min() - border, X[:, 1].max() + border | |
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) | |
mesh = np.c_[xx.ravel(), yy.ravel()] | |
z_class = clf.predict(mesh).reshape(xx.shape) | |
# Put the result into a color plot | |
pl.figure(1, figsize=(8, 6)) | |
pl.pcolormesh(xx, yy, z_class, cmap=pl.cm.summer, alpha=0.3) | |
# Plot hyperplane and margin | |
z_dist = clf.decision_function(mesh).reshape(xx.shape) | |
pl.contour(xx, yy, z_dist, [0.0], colors='black') | |
pl.contour(xx, yy, z_dist, [-1.0, 1.0], colors='black', linestyles='dashed') | |
# Plot also the training points | |
y_pred = clf.predict(X) | |
ind_support = clf.support_ | |
ind_correct = list(set(find(y == y_pred)) - set(ind_support)) | |
ind_incorrect = list(set(find(y != y_pred)) - set(ind_support)) | |
pl.scatter(X[ind_correct, 0], X[ind_correct, 1], c=y[ind_correct], cmap=pl.cm.summer, alpha=0.9) | |
pl.scatter(X[ind_incorrect, 0], X[ind_incorrect, 1], c=y[ind_incorrect], cmap=pl.cm.summer, alpha=0.9, marker='*', s=50) | |
pl.scatter(X[ind_support, 0], X[ind_support, 1], c=y[ind_support], cmap=pl.cm.summer, alpha=0.9, linewidths=1.8, s=40) | |
pl.xlim(xx.min(), xx.max()) | |
pl.ylim(yy.min(), yy.max()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment