Skip to content

Instantly share code, notes, and snippets.

@ktl014
Created March 2, 2018 22:31
Show Gist options
  • Save ktl014/bb3e68b52123bf07861ef04488e941b3 to your computer and use it in GitHub Desktop.
Save ktl014/bb3e68b52123bf07861ef04488e941b3 to your computer and use it in GitHub Desktop.
name: "VGG_ILSVRC_16_layers"
layer {
name: "data"
type: "Data"
include {
phase: TRAIN
}
transform_param {
crop_size: 224
mean_value: 104
mean_value: 117
mean_value: 123
mirror: true
}
data_param {
source: "data_set/train_lmdb"
batch_size: 128
backend: LMDB
}
top: "data"
top: "label"
}
layer {
name: "data"
type: "Data"
include {
phase: TEST
}
transform_param {
crop_size: 224
mean_value: 104
mean_value: 117
mean_value: 123
mirror: false
}
data_param {
source: "data_set/val_lmdb"
batch_size: 32
backend: LMDB
}
top: "data"
top: "label"
}
layer {
bottom: "data"
top: "conv1_1"
name: "conv1_1"
type: "Convolution"
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
}
param {
lr_mult: 0
}
param {
lr_mult: 0
}
}
layer {
bottom: "conv1_1"
top: "conv1_1"
name: "relu1_1"
type: "ReLU"
}
layer {
bottom: "conv1_1"
top: "conv1_2"
name: "conv1_2"
type: "Convolution"
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
}
param {
lr_mult: 0
}
param {
lr_mult: 0
}
}
layer {
bottom: "conv1_2"
top: "conv1_2"
name: "relu1_2"
type: "ReLU"
}
layer {
bottom: "conv1_2"
top: "pool1"
name: "pool1"
type: "Pooling"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
bottom: "pool1"
top: "conv2_1"
name: "conv2_1"
type: "Convolution"
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
}
param {
lr_mult: 0
}
param {
lr_mult: 0
}
}
layer {
bottom: "conv2_1"
top: "conv2_1"
name: "relu2_1"
type: "ReLU"
}
layer {
bottom: "conv2_1"
top: "conv2_2"
name: "conv2_2"
type: "Convolution"
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
}
param {
lr_mult: 0
}
param {
lr_mult: 0
}
}
layer {
bottom: "conv2_2"
top: "conv2_2"
name: "relu2_2"
type: "ReLU"
}
layer {
bottom: "conv2_2"
top: "pool2"
name: "pool2"
type: "Pooling"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
bottom: "pool2"
top: "conv3_1"
name: "conv3_1"
type: "Convolution"
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
param {
lr_mult: 0
}
param {
lr_mult: 0
}
}
layer {
bottom: "conv3_1"
top: "conv3_1"
name: "relu3_1"
type: "ReLU"
}
layer {
bottom: "conv3_1"
top: "conv3_2"
name: "conv3_2"
type: "Convolution"
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
param {
lr_mult: 0
}
param {
lr_mult: 0
}
}
layer {
bottom: "conv3_2"
top: "conv3_2"
name: "relu3_2"
type: "ReLU"
}
layer {
bottom: "conv3_2"
top: "conv3_3"
name: "conv3_3"
type: "Convolution"
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
param {
lr_mult: 0
}
param {
lr_mult: 0
}
}
layer {
bottom: "conv3_3"
top: "conv3_3"
name: "relu3_3"
type: "ReLU"
}
layer {
bottom: "conv3_3"
top: "pool3"
name: "pool3"
type: "Pooling"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
bottom: "pool3"
top: "conv4_1"
name: "conv4_1"
type: "Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
param {
lr_mult: 0
}
param {
lr_mult: 0
}
}
layer {
bottom: "conv4_1"
top: "conv4_1"
name: "relu4_1"
type: "ReLU"
}
layer {
bottom: "conv4_1"
top: "conv4_2"
name: "conv4_2"
type: "Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
param {
lr_mult: 0
}
param {
lr_mult: 0
}
}
layer {
bottom: "conv4_2"
top: "conv4_2"
name: "relu4_2"
type: "ReLU"
}
layer {
bottom: "conv4_2"
top: "conv4_3"
name: "conv4_3"
type: "Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
param {
lr_mult: 0
}
param {
lr_mult: 0
}
}
layer {
bottom: "conv4_3"
top: "conv4_3"
name: "relu4_3"
type: "ReLU"
}
layer {
bottom: "conv4_3"
top: "pool4"
name: "pool4"
type: "Pooling"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
bottom: "pool4"
top: "conv5_1"
name: "conv5_1"
type: "Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
param {
lr_mult: 0
}
param {
lr_mult: 0
}
}
layer {
bottom: "conv5_1"
top: "conv5_1"
name: "relu5_1"
type: "ReLU"
}
layer {
bottom: "conv5_1"
top: "conv5_2"
name: "conv5_2"
type: "Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
param {
lr_mult: 0
}
param {
lr_mult: 0
}
}
layer {
bottom: "conv5_2"
top: "conv5_2"
name: "relu5_2"
type: "ReLU"
}
layer {
bottom: "conv5_2"
top: "conv5_3"
name: "conv5_3"
type: "Convolution"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
param {
lr_mult: 0
}
param {
lr_mult: 0
}
}
layer {
bottom: "conv5_3"
top: "conv5_3"
name: "relu5_3"
type: "ReLU"
}
layer {
bottom: "conv5_3"
top: "pool5"
name: "pool5"
type: "Pooling"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
bottom: "pool5"
top: "fc6"
name: "fc6"
type: "InnerProduct"
inner_product_param {
num_output: 4096
}
param {
lr_mult: 0
}
param {
lr_mult: 0
}
}
layer {
bottom: "fc6"
top: "fc6"
name: "relu6"
type: "ReLU"
}
layer {
bottom: "fc6"
top: "fc6"
name: "drop6"
type: "Dropout"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
bottom: "fc6"
top: "fc7"
name: "fc7"
type: "InnerProduct"
inner_product_param {
num_output: 4096
}
param {
lr_mult: 0
}
param {
lr_mult: 0
}
}
layer {
bottom: "fc7"
top: "fc7"
name: "relu7"
type: "ReLU"
}
layer {
bottom: "fc7"
top: "fc7"
name: "drop7"
type: "Dropout"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc8"
bottom: "fc7"
top: "fc8"
type: "InnerProduct"
inner_product_param {
num_output: 1000
}
param {
lr_mult: 0
}
param {
lr_mult: 0
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "fc8"
bottom: "label"
top: "loss/loss"
}
layer {
name: "accuracy/top1"
type: "Accuracy"
bottom: "fc8"
bottom: "label"
top: "accuracy@1"
include: { phase: TEST }
accuracy_param {
top_k: 1
}
}
layer {
name: "accuracy/top5"
type: "Accuracy"
bottom: "fc8"
bottom: "label"
top: "accuracy@5"
include: { phase: TEST }
accuracy_param {
top_k: 5
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment