Created
August 7, 2018 16:12
-
-
Save ktl014/e7da174d967999555213dada21c8841c to your computer and use it in GitHub Desktop.
kernel approximation using svm
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.kernel_approximation import RBFSampler | |
from sklearn.decomposition import PCA | |
kernel_svm = svm.SVC(gamma=.2) | |
linear_svm = svm.LinearSVC() | |
feature_map_fourier = RBFSampler(gamma=.2, random_state=SEED) | |
feature_map_nystroem = Nystroem(gamma=.2, random_state=SEED) | |
fourier_approx_svm = pipeline.Pipeline([("feature_map", feature_map_fourier), | |
("svm", svm.LinearSVC())]) | |
nystroem_approx_svm = pipeline.Pipeline([("feature_map", feature_map_nystroem), | |
("svm", svm.LinearSVC())]) | |
kernel_svm.fit(data['train'], train_lbls) | |
print(kernel_svm.score(data['test'], val_lbls)) | |
linear_svm.fit(data['train'], train_lbls) | |
print(linear_svm.score(data['test'], val_lbls)) | |
nystroem_approx_svm.fit(data['train'], train_lbls) | |
print(nystroem_approx_svm.score(data['test'], val_lbls)) | |
fourier_approx_svm.fit(data['train'], train_lbls) | |
print(fourier_approx_svm.score(data['test'], val_lbls)) | |
# visualize the decision surface, projected down to the first | |
# two principal components of the dataset | |
pca = PCA(n_components=3).fit(data['train']) | |
X = pca.transform(data['train']) | |
# Generate grid along first two principal components | |
multiples = np.arange(-2, 2, 0.1) | |
# steps along first component | |
first = multiples[:, np.newaxis] * pca.components_[0, :] | |
# steps along second component | |
second = multiples[:, np.newaxis] * pca.components_[1, :] | |
# combine | |
grid = first[np.newaxis, :, :] + second[:, np.newaxis, :] | |
flat_grid = grid.reshape(-1, data['train'].shape[1]) | |
# title for the plots | |
titles = ['SVC with rbf kernel', | |
'SVC (linear kernel)\n with Fourier rbf feature map\n' | |
'n_components=100', | |
'SVC (linear kernel)\n with Nystroem rbf feature map\n' | |
'n_components=100'] | |
plt.tight_layout() | |
plt.figure(figsize=(12, 5)) | |
# predict and plot | |
for i, clf in enumerate((kernel_svm, nystroem_approx_svm, | |
fourier_approx_svm)): | |
# Plot the decision boundary. For that, we will assign a color to each | |
# point in the mesh [x_min, x_max]x[y_min, y_max]. | |
plt.subplot(1, 3, i + 1) | |
Z = clf.predict(flat_grid) | |
# Put the result into a color plot | |
Z = Z.reshape(grid.shape[:-1]) | |
plt.contourf(multiples, multiples, Z, cmap=plt.cm.Paired) | |
plt.axis('off') | |
# Plot also the training points | |
plt.scatter(X[:, 0], X[:, 1], c=train_lbls, cmap=plt.cm.Paired, | |
edgecolors=(0, 0, 0)) | |
plt.title(titles[i]) | |
plt.tight_layout() | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment