Skip to content

Instantly share code, notes, and snippets.

@ktl014
Created February 18, 2018 01:09
Show Gist options
  • Save ktl014/f7921504dc0a115dd7dd7218db24e088 to your computer and use it in GitHub Desktop.
Save ktl014/f7921504dc0a115dd7dd7218db24e088 to your computer and use it in GitHub Desktop.
input: "image"
input_dim: 1
input_dim: 3
input_dim: 1 # This value will be defined at runtime
input_dim: 1 # This value will be defined at runtime
layer {
name: "conv1_1"
type: "Convolution"
bottom: "image"
top: "conv1_1"
param {
lr_mult: 1.0
decay_mult: 1
}
param {
lr_mult: 2.0
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1_1"
type: "ReLU"
bottom: "conv1_1"
top: "conv1_1"
}
layer {
name: "conv1_2"
type: "Convolution"
bottom: "conv1_1"
top: "conv1_2"
param {
lr_mult: 1.0
decay_mult: 1
}
param {
lr_mult: 2.0
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1_2"
type: "ReLU"
bottom: "conv1_2"
top: "conv1_2"
}
layer {
name: "pool1_stage1"
type: "Pooling"
bottom: "conv1_2"
top: "pool1_stage1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2_1"
type: "Convolution"
bottom: "pool1_stage1"
top: "conv2_1"
param {
lr_mult: 1.0
decay_mult: 1
}
param {
lr_mult: 2.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu2_1"
type: "ReLU"
bottom: "conv2_1"
top: "conv2_1"
}
layer {
name: "conv2_2"
type: "Convolution"
bottom: "conv2_1"
top: "conv2_2"
param {
lr_mult: 1.0
decay_mult: 1
}
param {
lr_mult: 2.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu2_2"
type: "ReLU"
bottom: "conv2_2"
top: "conv2_2"
}
layer {
name: "pool2_stage1"
type: "Pooling"
bottom: "conv2_2"
top: "pool2_stage1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv3_1"
type: "Convolution"
bottom: "pool2_stage1"
top: "conv3_1"
param {
lr_mult: 1.0
decay_mult: 1
}
param {
lr_mult: 2.0
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu3_1"
type: "ReLU"
bottom: "conv3_1"
top: "conv3_1"
}
layer {
name: "conv3_2"
type: "Convolution"
bottom: "conv3_1"
top: "conv3_2"
param {
lr_mult: 1.0
decay_mult: 1
}
param {
lr_mult: 2.0
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu3_2"
type: "ReLU"
bottom: "conv3_2"
top: "conv3_2"
}
layer {
name: "conv3_3"
type: "Convolution"
bottom: "conv3_2"
top: "conv3_3"
param {
lr_mult: 1.0
decay_mult: 1
}
param {
lr_mult: 2.0
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu3_3"
type: "ReLU"
bottom: "conv3_3"
top: "conv3_3"
}
layer {
name: "conv3_4"
type: "Convolution"
bottom: "conv3_3"
top: "conv3_4"
param {
lr_mult: 1.0
decay_mult: 1
}
param {
lr_mult: 2.0
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu3_4"
type: "ReLU"
bottom: "conv3_4"
top: "conv3_4"
}
layer {
name: "pool3_stage1"
type: "Pooling"
bottom: "conv3_4"
top: "pool3_stage1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv4_1"
type: "Convolution"
bottom: "pool3_stage1"
top: "conv4_1"
param {
lr_mult: 1.0
decay_mult: 1
}
param {
lr_mult: 2.0
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu4_1"
type: "ReLU"
bottom: "conv4_1"
top: "conv4_1"
}
layer {
name: "conv4_2"
type: "Convolution"
bottom: "conv4_1"
top: "conv4_2"
param {
lr_mult: 1.0
decay_mult: 1
}
param {
lr_mult: 2.0
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu4_2"
type: "ReLU"
bottom: "conv4_2"
top: "conv4_2"
}
layer {
name: "conv4_3_CPM"
type: "Convolution"
bottom: "conv4_2"
top: "conv4_3_CPM"
param {
lr_mult: 1.0
decay_mult: 1
}
param {
lr_mult: 2.0
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu4_3_CPM"
type: "ReLU"
bottom: "conv4_3_CPM"
top: "conv4_3_CPM"
}
layer {
name: "conv4_4_CPM"
type: "Convolution"
bottom: "conv4_3_CPM"
top: "conv4_4_CPM"
param {
lr_mult: 1.0
decay_mult: 1
}
param {
lr_mult: 2.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu4_4_CPM"
type: "ReLU"
bottom: "conv4_4_CPM"
top: "conv4_4_CPM"
}
layer {
name: "conv5_1_CPM_L1"
type: "Convolution"
bottom: "conv4_4_CPM"
top: "conv5_1_CPM_L1"
param {
lr_mult: 1.0
decay_mult: 1
}
param {
lr_mult: 2.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu5_1_CPM_L1"
type: "ReLU"
bottom: "conv5_1_CPM_L1"
top: "conv5_1_CPM_L1"
}
layer {
name: "conv5_1_CPM_L2"
type: "Convolution"
bottom: "conv4_4_CPM"
top: "conv5_1_CPM_L2"
param {
lr_mult: 1.0
decay_mult: 1
}
param {
lr_mult: 2.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu5_1_CPM_L2"
type: "ReLU"
bottom: "conv5_1_CPM_L2"
top: "conv5_1_CPM_L2"
}
layer {
name: "conv5_2_CPM_L1"
type: "Convolution"
bottom: "conv5_1_CPM_L1"
top: "conv5_2_CPM_L1"
param {
lr_mult: 1.0
decay_mult: 1
}
param {
lr_mult: 2.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu5_2_CPM_L1"
type: "ReLU"
bottom: "conv5_2_CPM_L1"
top: "conv5_2_CPM_L1"
}
layer {
name: "conv5_2_CPM_L2"
type: "Convolution"
bottom: "conv5_1_CPM_L2"
top: "conv5_2_CPM_L2"
param {
lr_mult: 1.0
decay_mult: 1
}
param {
lr_mult: 2.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu5_2_CPM_L2"
type: "ReLU"
bottom: "conv5_2_CPM_L2"
top: "conv5_2_CPM_L2"
}
layer {
name: "conv5_3_CPM_L1"
type: "Convolution"
bottom: "conv5_2_CPM_L1"
top: "conv5_3_CPM_L1"
param {
lr_mult: 1.0
decay_mult: 1
}
param {
lr_mult: 2.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu5_3_CPM_L1"
type: "ReLU"
bottom: "conv5_3_CPM_L1"
top: "conv5_3_CPM_L1"
}
layer {
name: "conv5_3_CPM_L2"
type: "Convolution"
bottom: "conv5_2_CPM_L2"
top: "conv5_3_CPM_L2"
param {
lr_mult: 1.0
decay_mult: 1
}
param {
lr_mult: 2.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu5_3_CPM_L2"
type: "ReLU"
bottom: "conv5_3_CPM_L2"
top: "conv5_3_CPM_L2"
}
layer {
name: "conv5_4_CPM_L1"
type: "Convolution"
bottom: "conv5_3_CPM_L1"
top: "conv5_4_CPM_L1"
param {
lr_mult: 1.0
decay_mult: 1
}
param {
lr_mult: 2.0
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu5_4_CPM_L1"
type: "ReLU"
bottom: "conv5_4_CPM_L1"
top: "conv5_4_CPM_L1"
}
layer {
name: "conv5_4_CPM_L2"
type: "Convolution"
bottom: "conv5_3_CPM_L2"
top: "conv5_4_CPM_L2"
param {
lr_mult: 1.0
decay_mult: 1
}
param {
lr_mult: 2.0
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu5_4_CPM_L2"
type: "ReLU"
bottom: "conv5_4_CPM_L2"
top: "conv5_4_CPM_L2"
}
layer {
name: "conv5_5_CPM_L1"
type: "Convolution"
bottom: "conv5_4_CPM_L1"
top: "conv5_5_CPM_L1"
param {
lr_mult: 1.0
decay_mult: 1
}
param {
lr_mult: 2.0
decay_mult: 0
}
convolution_param {
num_output: 38
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "conv5_5_CPM_L2"
type: "Convolution"
bottom: "conv5_4_CPM_L2"
top: "conv5_5_CPM_L2"
param {
lr_mult: 1.0
decay_mult: 1
}
param {
lr_mult: 2.0
decay_mult: 0
}
convolution_param {
num_output: 19
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "concat_stage2"
type: "Concat"
bottom: "conv5_5_CPM_L1"
bottom: "conv5_5_CPM_L2"
bottom: "conv4_4_CPM"
top: "concat_stage2"
concat_param {
axis: 1
}
}
layer {
name: "Mconv1_stage2_L1"
type: "Convolution"
bottom: "concat_stage2"
top: "Mconv1_stage2_L1"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu1_stage2_L1"
type: "ReLU"
bottom: "Mconv1_stage2_L1"
top: "Mconv1_stage2_L1"
}
layer {
name: "Mconv1_stage2_L2"
type: "Convolution"
bottom: "concat_stage2"
top: "Mconv1_stage2_L2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu1_stage2_L2"
type: "ReLU"
bottom: "Mconv1_stage2_L2"
top: "Mconv1_stage2_L2"
}
layer {
name: "Mconv2_stage2_L1"
type: "Convolution"
bottom: "Mconv1_stage2_L1"
top: "Mconv2_stage2_L1"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu2_stage2_L1"
type: "ReLU"
bottom: "Mconv2_stage2_L1"
top: "Mconv2_stage2_L1"
}
layer {
name: "Mconv2_stage2_L2"
type: "Convolution"
bottom: "Mconv1_stage2_L2"
top: "Mconv2_stage2_L2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu2_stage2_L2"
type: "ReLU"
bottom: "Mconv2_stage2_L2"
top: "Mconv2_stage2_L2"
}
layer {
name: "Mconv3_stage2_L1"
type: "Convolution"
bottom: "Mconv2_stage2_L1"
top: "Mconv3_stage2_L1"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu3_stage2_L1"
type: "ReLU"
bottom: "Mconv3_stage2_L1"
top: "Mconv3_stage2_L1"
}
layer {
name: "Mconv3_stage2_L2"
type: "Convolution"
bottom: "Mconv2_stage2_L2"
top: "Mconv3_stage2_L2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu3_stage2_L2"
type: "ReLU"
bottom: "Mconv3_stage2_L2"
top: "Mconv3_stage2_L2"
}
layer {
name: "Mconv4_stage2_L1"
type: "Convolution"
bottom: "Mconv3_stage2_L1"
top: "Mconv4_stage2_L1"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu4_stage2_L1"
type: "ReLU"
bottom: "Mconv4_stage2_L1"
top: "Mconv4_stage2_L1"
}
layer {
name: "Mconv4_stage2_L2"
type: "Convolution"
bottom: "Mconv3_stage2_L2"
top: "Mconv4_stage2_L2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu4_stage2_L2"
type: "ReLU"
bottom: "Mconv4_stage2_L2"
top: "Mconv4_stage2_L2"
}
layer {
name: "Mconv5_stage2_L1"
type: "Convolution"
bottom: "Mconv4_stage2_L1"
top: "Mconv5_stage2_L1"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu5_stage2_L1"
type: "ReLU"
bottom: "Mconv5_stage2_L1"
top: "Mconv5_stage2_L1"
}
layer {
name: "Mconv5_stage2_L2"
type: "Convolution"
bottom: "Mconv4_stage2_L2"
top: "Mconv5_stage2_L2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu5_stage2_L2"
type: "ReLU"
bottom: "Mconv5_stage2_L2"
top: "Mconv5_stage2_L2"
}
layer {
name: "Mconv6_stage2_L1"
type: "Convolution"
bottom: "Mconv5_stage2_L1"
top: "Mconv6_stage2_L1"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu6_stage2_L1"
type: "ReLU"
bottom: "Mconv6_stage2_L1"
top: "Mconv6_stage2_L1"
}
layer {
name: "Mconv6_stage2_L2"
type: "Convolution"
bottom: "Mconv5_stage2_L2"
top: "Mconv6_stage2_L2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu6_stage2_L2"
type: "ReLU"
bottom: "Mconv6_stage2_L2"
top: "Mconv6_stage2_L2"
}
layer {
name: "Mconv7_stage2_L1"
type: "Convolution"
bottom: "Mconv6_stage2_L1"
top: "Mconv7_stage2_L1"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 38
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mconv7_stage2_L2"
type: "Convolution"
bottom: "Mconv6_stage2_L2"
top: "Mconv7_stage2_L2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 19
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "concat_stage3"
type: "Concat"
bottom: "Mconv7_stage2_L1"
bottom: "Mconv7_stage2_L2"
bottom: "conv4_4_CPM"
top: "concat_stage3"
concat_param {
axis: 1
}
}
layer {
name: "Mconv1_stage3_L1"
type: "Convolution"
bottom: "concat_stage3"
top: "Mconv1_stage3_L1"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu1_stage3_L1"
type: "ReLU"
bottom: "Mconv1_stage3_L1"
top: "Mconv1_stage3_L1"
}
layer {
name: "Mconv1_stage3_L2"
type: "Convolution"
bottom: "concat_stage3"
top: "Mconv1_stage3_L2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu1_stage3_L2"
type: "ReLU"
bottom: "Mconv1_stage3_L2"
top: "Mconv1_stage3_L2"
}
layer {
name: "Mconv2_stage3_L1"
type: "Convolution"
bottom: "Mconv1_stage3_L1"
top: "Mconv2_stage3_L1"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu2_stage3_L1"
type: "ReLU"
bottom: "Mconv2_stage3_L1"
top: "Mconv2_stage3_L1"
}
layer {
name: "Mconv2_stage3_L2"
type: "Convolution"
bottom: "Mconv1_stage3_L2"
top: "Mconv2_stage3_L2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu2_stage3_L2"
type: "ReLU"
bottom: "Mconv2_stage3_L2"
top: "Mconv2_stage3_L2"
}
layer {
name: "Mconv3_stage3_L1"
type: "Convolution"
bottom: "Mconv2_stage3_L1"
top: "Mconv3_stage3_L1"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu3_stage3_L1"
type: "ReLU"
bottom: "Mconv3_stage3_L1"
top: "Mconv3_stage3_L1"
}
layer {
name: "Mconv3_stage3_L2"
type: "Convolution"
bottom: "Mconv2_stage3_L2"
top: "Mconv3_stage3_L2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu3_stage3_L2"
type: "ReLU"
bottom: "Mconv3_stage3_L2"
top: "Mconv3_stage3_L2"
}
layer {
name: "Mconv4_stage3_L1"
type: "Convolution"
bottom: "Mconv3_stage3_L1"
top: "Mconv4_stage3_L1"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu4_stage3_L1"
type: "ReLU"
bottom: "Mconv4_stage3_L1"
top: "Mconv4_stage3_L1"
}
layer {
name: "Mconv4_stage3_L2"
type: "Convolution"
bottom: "Mconv3_stage3_L2"
top: "Mconv4_stage3_L2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu4_stage3_L2"
type: "ReLU"
bottom: "Mconv4_stage3_L2"
top: "Mconv4_stage3_L2"
}
layer {
name: "Mconv5_stage3_L1"
type: "Convolution"
bottom: "Mconv4_stage3_L1"
top: "Mconv5_stage3_L1"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu5_stage3_L1"
type: "ReLU"
bottom: "Mconv5_stage3_L1"
top: "Mconv5_stage3_L1"
}
layer {
name: "Mconv5_stage3_L2"
type: "Convolution"
bottom: "Mconv4_stage3_L2"
top: "Mconv5_stage3_L2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu5_stage3_L2"
type: "ReLU"
bottom: "Mconv5_stage3_L2"
top: "Mconv5_stage3_L2"
}
layer {
name: "Mconv6_stage3_L1"
type: "Convolution"
bottom: "Mconv5_stage3_L1"
top: "Mconv6_stage3_L1"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu6_stage3_L1"
type: "ReLU"
bottom: "Mconv6_stage3_L1"
top: "Mconv6_stage3_L1"
}
layer {
name: "Mconv6_stage3_L2"
type: "Convolution"
bottom: "Mconv5_stage3_L2"
top: "Mconv6_stage3_L2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu6_stage3_L2"
type: "ReLU"
bottom: "Mconv6_stage3_L2"
top: "Mconv6_stage3_L2"
}
layer {
name: "Mconv7_stage3_L1"
type: "Convolution"
bottom: "Mconv6_stage3_L1"
top: "Mconv7_stage3_L1"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 38
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mconv7_stage3_L2"
type: "Convolution"
bottom: "Mconv6_stage3_L2"
top: "Mconv7_stage3_L2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 19
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "concat_stage4"
type: "Concat"
bottom: "Mconv7_stage3_L1"
bottom: "Mconv7_stage3_L2"
bottom: "conv4_4_CPM"
top: "concat_stage4"
concat_param {
axis: 1
}
}
layer {
name: "Mconv1_stage4_L1"
type: "Convolution"
bottom: "concat_stage4"
top: "Mconv1_stage4_L1"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu1_stage4_L1"
type: "ReLU"
bottom: "Mconv1_stage4_L1"
top: "Mconv1_stage4_L1"
}
layer {
name: "Mconv1_stage4_L2"
type: "Convolution"
bottom: "concat_stage4"
top: "Mconv1_stage4_L2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu1_stage4_L2"
type: "ReLU"
bottom: "Mconv1_stage4_L2"
top: "Mconv1_stage4_L2"
}
layer {
name: "Mconv2_stage4_L1"
type: "Convolution"
bottom: "Mconv1_stage4_L1"
top: "Mconv2_stage4_L1"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu2_stage4_L1"
type: "ReLU"
bottom: "Mconv2_stage4_L1"
top: "Mconv2_stage4_L1"
}
layer {
name: "Mconv2_stage4_L2"
type: "Convolution"
bottom: "Mconv1_stage4_L2"
top: "Mconv2_stage4_L2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu2_stage4_L2"
type: "ReLU"
bottom: "Mconv2_stage4_L2"
top: "Mconv2_stage4_L2"
}
layer {
name: "Mconv3_stage4_L1"
type: "Convolution"
bottom: "Mconv2_stage4_L1"
top: "Mconv3_stage4_L1"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu3_stage4_L1"
type: "ReLU"
bottom: "Mconv3_stage4_L1"
top: "Mconv3_stage4_L1"
}
layer {
name: "Mconv3_stage4_L2"
type: "Convolution"
bottom: "Mconv2_stage4_L2"
top: "Mconv3_stage4_L2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu3_stage4_L2"
type: "ReLU"
bottom: "Mconv3_stage4_L2"
top: "Mconv3_stage4_L2"
}
layer {
name: "Mconv4_stage4_L1"
type: "Convolution"
bottom: "Mconv3_stage4_L1"
top: "Mconv4_stage4_L1"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu4_stage4_L1"
type: "ReLU"
bottom: "Mconv4_stage4_L1"
top: "Mconv4_stage4_L1"
}
layer {
name: "Mconv4_stage4_L2"
type: "Convolution"
bottom: "Mconv3_stage4_L2"
top: "Mconv4_stage4_L2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu4_stage4_L2"
type: "ReLU"
bottom: "Mconv4_stage4_L2"
top: "Mconv4_stage4_L2"
}
layer {
name: "Mconv5_stage4_L1"
type: "Convolution"
bottom: "Mconv4_stage4_L1"
top: "Mconv5_stage4_L1"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu5_stage4_L1"
type: "ReLU"
bottom: "Mconv5_stage4_L1"
top: "Mconv5_stage4_L1"
}
layer {
name: "Mconv5_stage4_L2"
type: "Convolution"
bottom: "Mconv4_stage4_L2"
top: "Mconv5_stage4_L2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu5_stage4_L2"
type: "ReLU"
bottom: "Mconv5_stage4_L2"
top: "Mconv5_stage4_L2"
}
layer {
name: "Mconv6_stage4_L1"
type: "Convolution"
bottom: "Mconv5_stage4_L1"
top: "Mconv6_stage4_L1"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu6_stage4_L1"
type: "ReLU"
bottom: "Mconv6_stage4_L1"
top: "Mconv6_stage4_L1"
}
layer {
name: "Mconv6_stage4_L2"
type: "Convolution"
bottom: "Mconv5_stage4_L2"
top: "Mconv6_stage4_L2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu6_stage4_L2"
type: "ReLU"
bottom: "Mconv6_stage4_L2"
top: "Mconv6_stage4_L2"
}
layer {
name: "Mconv7_stage4_L1"
type: "Convolution"
bottom: "Mconv6_stage4_L1"
top: "Mconv7_stage4_L1"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 38
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mconv7_stage4_L2"
type: "Convolution"
bottom: "Mconv6_stage4_L2"
top: "Mconv7_stage4_L2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 19
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "concat_stage5"
type: "Concat"
bottom: "Mconv7_stage4_L1"
bottom: "Mconv7_stage4_L2"
bottom: "conv4_4_CPM"
top: "concat_stage5"
concat_param {
axis: 1
}
}
layer {
name: "Mconv1_stage5_L1"
type: "Convolution"
bottom: "concat_stage5"
top: "Mconv1_stage5_L1"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu1_stage5_L1"
type: "ReLU"
bottom: "Mconv1_stage5_L1"
top: "Mconv1_stage5_L1"
}
layer {
name: "Mconv1_stage5_L2"
type: "Convolution"
bottom: "concat_stage5"
top: "Mconv1_stage5_L2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu1_stage5_L2"
type: "ReLU"
bottom: "Mconv1_stage5_L2"
top: "Mconv1_stage5_L2"
}
layer {
name: "Mconv2_stage5_L1"
type: "Convolution"
bottom: "Mconv1_stage5_L1"
top: "Mconv2_stage5_L1"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu2_stage5_L1"
type: "ReLU"
bottom: "Mconv2_stage5_L1"
top: "Mconv2_stage5_L1"
}
layer {
name: "Mconv2_stage5_L2"
type: "Convolution"
bottom: "Mconv1_stage5_L2"
top: "Mconv2_stage5_L2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu2_stage5_L2"
type: "ReLU"
bottom: "Mconv2_stage5_L2"
top: "Mconv2_stage5_L2"
}
layer {
name: "Mconv3_stage5_L1"
type: "Convolution"
bottom: "Mconv2_stage5_L1"
top: "Mconv3_stage5_L1"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu3_stage5_L1"
type: "ReLU"
bottom: "Mconv3_stage5_L1"
top: "Mconv3_stage5_L1"
}
layer {
name: "Mconv3_stage5_L2"
type: "Convolution"
bottom: "Mconv2_stage5_L2"
top: "Mconv3_stage5_L2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu3_stage5_L2"
type: "ReLU"
bottom: "Mconv3_stage5_L2"
top: "Mconv3_stage5_L2"
}
layer {
name: "Mconv4_stage5_L1"
type: "Convolution"
bottom: "Mconv3_stage5_L1"
top: "Mconv4_stage5_L1"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu4_stage5_L1"
type: "ReLU"
bottom: "Mconv4_stage5_L1"
top: "Mconv4_stage5_L1"
}
layer {
name: "Mconv4_stage5_L2"
type: "Convolution"
bottom: "Mconv3_stage5_L2"
top: "Mconv4_stage5_L2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu4_stage5_L2"
type: "ReLU"
bottom: "Mconv4_stage5_L2"
top: "Mconv4_stage5_L2"
}
layer {
name: "Mconv5_stage5_L1"
type: "Convolution"
bottom: "Mconv4_stage5_L1"
top: "Mconv5_stage5_L1"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu5_stage5_L1"
type: "ReLU"
bottom: "Mconv5_stage5_L1"
top: "Mconv5_stage5_L1"
}
layer {
name: "Mconv5_stage5_L2"
type: "Convolution"
bottom: "Mconv4_stage5_L2"
top: "Mconv5_stage5_L2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu5_stage5_L2"
type: "ReLU"
bottom: "Mconv5_stage5_L2"
top: "Mconv5_stage5_L2"
}
layer {
name: "Mconv6_stage5_L1"
type: "Convolution"
bottom: "Mconv5_stage5_L1"
top: "Mconv6_stage5_L1"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu6_stage5_L1"
type: "ReLU"
bottom: "Mconv6_stage5_L1"
top: "Mconv6_stage5_L1"
}
layer {
name: "Mconv6_stage5_L2"
type: "Convolution"
bottom: "Mconv5_stage5_L2"
top: "Mconv6_stage5_L2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu6_stage5_L2"
type: "ReLU"
bottom: "Mconv6_stage5_L2"
top: "Mconv6_stage5_L2"
}
layer {
name: "Mconv7_stage5_L1"
type: "Convolution"
bottom: "Mconv6_stage5_L1"
top: "Mconv7_stage5_L1"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 38
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mconv7_stage5_L2"
type: "Convolution"
bottom: "Mconv6_stage5_L2"
top: "Mconv7_stage5_L2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 19
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "concat_stage6"
type: "Concat"
bottom: "Mconv7_stage5_L1"
bottom: "Mconv7_stage5_L2"
bottom: "conv4_4_CPM"
top: "concat_stage6"
concat_param {
axis: 1
}
}
layer {
name: "Mconv1_stage6_L1"
type: "Convolution"
bottom: "concat_stage6"
top: "Mconv1_stage6_L1"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu1_stage6_L1"
type: "ReLU"
bottom: "Mconv1_stage6_L1"
top: "Mconv1_stage6_L1"
}
layer {
name: "Mconv1_stage6_L2"
type: "Convolution"
bottom: "concat_stage6"
top: "Mconv1_stage6_L2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu1_stage6_L2"
type: "ReLU"
bottom: "Mconv1_stage6_L2"
top: "Mconv1_stage6_L2"
}
layer {
name: "Mconv2_stage6_L1"
type: "Convolution"
bottom: "Mconv1_stage6_L1"
top: "Mconv2_stage6_L1"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu2_stage6_L1"
type: "ReLU"
bottom: "Mconv2_stage6_L1"
top: "Mconv2_stage6_L1"
}
layer {
name: "Mconv2_stage6_L2"
type: "Convolution"
bottom: "Mconv1_stage6_L2"
top: "Mconv2_stage6_L2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu2_stage6_L2"
type: "ReLU"
bottom: "Mconv2_stage6_L2"
top: "Mconv2_stage6_L2"
}
layer {
name: "Mconv3_stage6_L1"
type: "Convolution"
bottom: "Mconv2_stage6_L1"
top: "Mconv3_stage6_L1"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu3_stage6_L1"
type: "ReLU"
bottom: "Mconv3_stage6_L1"
top: "Mconv3_stage6_L1"
}
layer {
name: "Mconv3_stage6_L2"
type: "Convolution"
bottom: "Mconv2_stage6_L2"
top: "Mconv3_stage6_L2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu3_stage6_L2"
type: "ReLU"
bottom: "Mconv3_stage6_L2"
top: "Mconv3_stage6_L2"
}
layer {
name: "Mconv4_stage6_L1"
type: "Convolution"
bottom: "Mconv3_stage6_L1"
top: "Mconv4_stage6_L1"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu4_stage6_L1"
type: "ReLU"
bottom: "Mconv4_stage6_L1"
top: "Mconv4_stage6_L1"
}
layer {
name: "Mconv4_stage6_L2"
type: "Convolution"
bottom: "Mconv3_stage6_L2"
top: "Mconv4_stage6_L2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu4_stage6_L2"
type: "ReLU"
bottom: "Mconv4_stage6_L2"
top: "Mconv4_stage6_L2"
}
layer {
name: "Mconv5_stage6_L1"
type: "Convolution"
bottom: "Mconv4_stage6_L1"
top: "Mconv5_stage6_L1"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu5_stage6_L1"
type: "ReLU"
bottom: "Mconv5_stage6_L1"
top: "Mconv5_stage6_L1"
}
layer {
name: "Mconv5_stage6_L2"
type: "Convolution"
bottom: "Mconv4_stage6_L2"
top: "Mconv5_stage6_L2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 3
kernel_size: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu5_stage6_L2"
type: "ReLU"
bottom: "Mconv5_stage6_L2"
top: "Mconv5_stage6_L2"
}
layer {
name: "Mconv6_stage6_L1"
type: "Convolution"
bottom: "Mconv5_stage6_L1"
top: "Mconv6_stage6_L1"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu6_stage6_L1"
type: "ReLU"
bottom: "Mconv6_stage6_L1"
top: "Mconv6_stage6_L1"
}
layer {
name: "Mconv6_stage6_L2"
type: "Convolution"
bottom: "Mconv5_stage6_L2"
top: "Mconv6_stage6_L2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mrelu6_stage6_L2"
type: "ReLU"
bottom: "Mconv6_stage6_L2"
top: "Mconv6_stage6_L2"
}
layer {
name: "Mconv7_stage6_L1"
type: "Convolution"
bottom: "Mconv6_stage6_L1"
top: "Mconv7_stage6_L1"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 38
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "Mconv7_stage6_L2"
type: "Convolution"
bottom: "Mconv6_stage6_L2"
top: "Mconv7_stage6_L2"
param {
lr_mult: 4.0
decay_mult: 1
}
param {
lr_mult: 8.0
decay_mult: 0
}
convolution_param {
num_output: 19
pad: 0
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "concat_stage7"
type: "Concat"
bottom: "Mconv7_stage6_L2"
bottom: "Mconv7_stage6_L1"
# top: "concat_stage7"
top: "net_output"
concat_param {
axis: 1
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment