Last active
May 30, 2018 03:06
-
-
Save ktl014/f86c5ed05f4a155bffbb814a345e0a5f to your computer and use it in GitHub Desktop.
CaffeNet model
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| name: "AlexNet" | |
| layer { | |
| name: "data" | |
| type: "Data" | |
| top: "data" | |
| top: "label" | |
| include { | |
| phase: TRAIN | |
| } | |
| # transform_param { | |
| # mirror: true | |
| # crop_size: 227 | |
| # mean_file: "data/ilsvrc12/imagenet_mean.binaryproto" | |
| # } | |
| # mean pixel / channel-wise mean instead of mean image | |
| transform_param { | |
| crop_size: 227 | |
| mean_value: 104 | |
| mean_value: 117 | |
| mean_value: 123 | |
| mirror: true | |
| } | |
| data_param { | |
| source: "/data4/plankton_wi17/mpl/source_domain/spcombo/combo_finetune/allv1b-noise100/allv1b-noise100_100-100/code/train.LMDB" | |
| batch_size: 256 | |
| backend: LMDB | |
| } | |
| } | |
| layer { | |
| name: "data" | |
| type: "Data" | |
| top: "data" | |
| top: "label" | |
| include { | |
| phase: TEST | |
| } | |
| # transform_param { | |
| # mirror: false | |
| # crop_size: 227 | |
| # mean_file: "data/ilsvrc12/imagenet_mean.binaryproto" | |
| # } | |
| # mean pixel / channel-wise mean instead of mean image | |
| transform_param { | |
| crop_size: 227 | |
| mean_value: 104 | |
| mean_value: 117 | |
| mean_value: 123 | |
| mirror: true | |
| } | |
| data_param { | |
| source: "/data4/plankton_wi17/mpl/source_domain/spcombo/combo_finetune/allv1b-noise100/allv1b-noise100_100-100/code/val.LMDB" | |
| batch_size: 50 | |
| backend: LMDB | |
| } | |
| } | |
| layer { | |
| name: "conv1" | |
| type: "Convolution" | |
| bottom: "data" | |
| top: "conv1" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 96 | |
| kernel_size: 11 | |
| stride: 4 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu1" | |
| type: "ReLU" | |
| bottom: "conv1" | |
| top: "conv1" | |
| } | |
| layer { | |
| name: "pool1" | |
| type: "Pooling" | |
| bottom: "conv1" | |
| top: "pool1" | |
| pooling_param { | |
| pool: MAX | |
| kernel_size: 3 | |
| stride: 2 | |
| } | |
| } | |
| layer { | |
| name: "norm1" | |
| type: "LRN" | |
| bottom: "pool1" | |
| top: "norm1" | |
| lrn_param { | |
| local_size: 5 | |
| alpha: 0.0001 | |
| beta: 0.75 | |
| } | |
| } | |
| layer { | |
| name: "conv2_a" | |
| type: "Convolution" | |
| bottom: "norm1" | |
| top: "conv2_a" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 256 | |
| pad: 2 | |
| kernel_size: 5 | |
| group: 2 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 1 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu2_a" | |
| type: "ReLU" | |
| bottom: "conv2_a" | |
| top: "conv2_a" | |
| } | |
| layer { | |
| name: "pool2_a" | |
| type: "Pooling" | |
| bottom: "conv2_a" | |
| top: "pool2_a" | |
| pooling_param { | |
| pool: MAX | |
| kernel_size: 3 | |
| stride: 2 | |
| } | |
| } | |
| layer { | |
| name: "norm2_a" | |
| type: "LRN" | |
| bottom: "pool2_a" | |
| top: "norm2_a" | |
| lrn_param { | |
| local_size: 5 | |
| alpha: 0.0001 | |
| beta: 0.75 | |
| } | |
| } | |
| layer { | |
| name: "conv3_a" | |
| type: "Convolution" | |
| bottom: "norm2_a" | |
| top: "conv3_a" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 384 | |
| pad: 1 | |
| kernel_size: 3 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu3_a" | |
| type: "ReLU" | |
| bottom: "conv3_a" | |
| top: "conv3_a" | |
| } | |
| layer { | |
| name: "conv4_a" | |
| type: "Convolution" | |
| bottom: "conv3_a" | |
| top: "conv4_a" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 384 | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 2 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 1 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu4_a" | |
| type: "ReLU" | |
| bottom: "conv4_a" | |
| top: "conv4_a" | |
| } | |
| layer { | |
| name: "conv5_a" | |
| type: "Convolution" | |
| bottom: "conv4_a" | |
| top: "conv5_a" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 256 | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 2 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 1 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu5_a" | |
| type: "ReLU" | |
| bottom: "conv5_a" | |
| top: "conv5_a" | |
| } | |
| layer { | |
| name: "pool5_a" | |
| type: "Pooling" | |
| bottom: "conv5_a" | |
| top: "pool5_a" | |
| pooling_param { | |
| pool: MAX | |
| kernel_size: 3 | |
| stride: 2 | |
| } | |
| } | |
| layer { | |
| name: "fc6_a" | |
| type: "InnerProduct" | |
| bottom: "pool5_a" | |
| top: "fc6_a" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| inner_product_param { | |
| num_output: 4096 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.005 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 1 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu6_a" | |
| type: "ReLU" | |
| bottom: "fc6_a" | |
| top: "fc6_a" | |
| } | |
| layer { | |
| name: "drop6_a" | |
| type: "Dropout" | |
| bottom: "fc6_a" | |
| top: "fc6_a" | |
| dropout_param { | |
| dropout_ratio: 0.5 | |
| } | |
| } | |
| layer { | |
| name: "fc7_a" | |
| type: "InnerProduct" | |
| bottom: "fc6_a" | |
| top: "fc7_a" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| inner_product_param { | |
| num_output: 4096 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.005 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 1 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu7_a" | |
| type: "ReLU" | |
| bottom: "fc7_a" | |
| top: "fc7_a" | |
| } | |
| layer { | |
| name: "drop7_a" | |
| type: "Dropout" | |
| bottom: "fc7_a" | |
| top: "fc7_a" | |
| dropout_param { | |
| dropout_ratio: 0.5 | |
| } | |
| } | |
| layer { | |
| name: "fc8_cayman" | |
| type: "InnerProduct" | |
| bottom: "fc7_a" | |
| top: "fc8_cayman" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| inner_product_param { | |
| num_output: 2 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "accuracy" | |
| type: "Accuracy" | |
| bottom: "fc8_cayman" | |
| bottom: "label" | |
| top: "accuracy" | |
| include { | |
| phase: TEST | |
| } | |
| } | |
| layer { | |
| name: "loss" | |
| type: "SoftmaxWithLoss" | |
| bottom: "fc8_cayman" | |
| bottom: "label" | |
| top: "loss" | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment