-
-
Save kuchaale/764e87054dfa5b86b1adadc9c16ffd79 to your computer and use it in GitHub Desktop.
Fast moving window regressions
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numba | |
import numpy as np | |
@numba.jit(nopython=True, fastmath=True) | |
def move_regress(X, Y, w, fit_intercept=True): | |
"""Moving window multi-regressions | |
Solves the least-squares problems `Y[t-w+1:t+1] = X[t-w+1:t+1] @ B[t] + A[t]` | |
for `B` and `A` for all `t` in `[w-1, len(Y)-1]`. | |
Parameters | |
---------- | |
X : (T, N) ndarray | |
Input array. | |
Y : (T, M) ndarray | |
Response array. | |
w : int | |
The number of elements in the moving window. | |
fit_intercept : boolean, optional | |
whether to include the intercept `A_t` in the equations. | |
Returns | |
------- | |
B : (T, N, M) ndarray | |
The moving coefficients. | |
A : (T, M) ndarray | |
The moving intercepts if fit_intercept is True otherwise omitted. | |
""" | |
if fit_intercept: | |
mX = X[:w].sum(0) / w | |
mY = Y[:w].sum(0) / w | |
H = (X[:w] - mX).T @ (Y[:w] - mY) | |
C = (X[:w] - mX).T @ (X[:w] - mX) | |
q = w ** -0.5 | |
mX /= q | |
mY /= q | |
else: | |
H = X[:w].T @ Y[:w] | |
C = X[:w].T @ X[:w] | |
K = np.ascontiguousarray(np.linalg.inv(C)) | |
B = np.full(X.shape + Y.shape[1:], np.nan) | |
B[w-1] = K @ H | |
if fit_intercept: | |
A = np.full(Y.shape, np.nan) | |
A[w-1] = mY - mX @ B[w-1] | |
for i in range(w, len(B)): | |
x_in, y_in, x_out, y_out = X[i], Y[i], X[i-w], Y[i-w] | |
if fit_intercept: | |
z = K @ mX | |
H += np.outer(mX, mY) | |
K -= np.outer(z, z) / (1.0 + mX @ z) | |
mX += q * (x_in - x_out) | |
mY += q * (y_in - y_out) | |
z = K @ mX | |
H -= np.outer(mX, mY) | |
K += np.outer(z, z) / (1.0 - mX @ z) | |
z = K @ x_in | |
H += np.outer(x_in, y_in) | |
K -= np.outer(z, z) / (1.0 + x_in @ z) | |
z = K @ x_out | |
H -= np.outer(x_out, y_out) | |
K += np.outer(z, z) / (1.0 - x_out @ z) | |
B[i] = K @ H | |
if fit_intercept: | |
A[i] = mY - mX @ B[i] | |
if not fit_intercept: | |
return B, None | |
A *= q | |
return B, A |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.linear_model import LinearRegression | |
X = np.random.randn(1000, 5) | |
B = np.random.randn(5, 3) | |
A = np.random.randn(1, 3) | |
err = 0.1 * np.random.randn(1000, 3) | |
Y = X @ B + A + err | |
b, a = move_regress(X, Y, 100) | |
%timeit b, a = move_regress(X, Y, 100) | |
clf = LinearRegression().fit(X[5:105], Y[5:105]) | |
assert np.allclose(clf.coef_, b[99 + 5].T) | |
assert np.allclose(clf.intercept_, a[99 + 5]) | |
b, _ = move_regress(X, Y, 100, fit_intercept=False) | |
%timeit b, _ = move_regress(X, Y, 100, fit_intercept=False) | |
clf = LinearRegression(fit_intercept=False).fit(X[5:105], Y[5:105]) | |
assert np.allclose(clf.coef_, b[99 + 5].T) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment