Created
June 2, 2015 20:11
-
-
Save kudkudak/9a74ebef2368331847cb to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def get_sabina_clusters(protein, fingerprint): | |
# Read data | |
actives, inactives = get_protein_fingerprint_cluster_files(protein, fingerprint) | |
clusters_active = [] | |
for a, _ in actives: | |
clusters_active.append(pd.io.parsers.read_csv(os.path.join(c["DATA_DIR"], a), header=None).as_matrix().astype("float32")) | |
inactive = pd.io.parsers.read_csv(os.path.join(c["DATA_DIR"], inactives), header=None).as_matrix().astype("float32") | |
# Standarize sizes | |
max_cols = max(inactive.shape[1], max(cl.shape[1] for cl in clusters_active)) | |
for cl_id, cl in enumerate(clusters_active): | |
if cl.shape[1] != max_cols: | |
clusters_active[cl_id] = np.hstack([cl, np.zeros(shape=(cl.shape[0], max_cols - cl.shape[1]))]) | |
if inactive.shape[1] != max_cols: | |
inactive = np.hstack([inactive, np.zeros(shape=(inactive.shape[0], max_cols - inactive.shape[1]))]) | |
# Start with biggest | |
biggest_id = np.argsort([-cluster.shape[0] for cluster in clusters_active])[0] | |
X = clusters_active[biggest_id] | |
clusters_active_ids = [range(X.shape[0])] | |
max_id = X.shape[0] - 1 | |
for cluster_id, cluster in enumerate(clusters_active): | |
if cluster_id != biggest_id: | |
if not np.isfinite(cluster).all(): | |
raise ValueError("F*CK, nan in cluster file.") | |
similarities = np.min(pairwise_distances(cluster, X, metric='l1'), axis=1) | |
X = np.vstack([X, cluster[similarities!=0]]) | |
start_id = max_id + 1 | |
existing = list(np.where(similarities==0)[0]) | |
clusters_active_ids.append(existing + range(start_id, start_id + (similarities!=0).sum())) | |
max_id = max(max_id, max(clusters_active_ids[-1])) # Update max_id | |
assert(len(clusters_active_ids[-1]) == cluster.shape[0]) | |
# Add inactives | |
X = np.vstack([X, inactive ]) | |
inactive_ids = range(max_id+1, max_id+1+inactive.shape[0]) | |
# Labels | |
Y = np.zeros(shape=(X.shape[0], 1)) | |
Y[:] = 1 | |
Y[max_id+1:] = -1 | |
return X, Y, [np.array(cl).reshape(-1) for cl in clusters_active_ids], np.array(inactive_ids).reshape(-1) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment