Skip to content

Instantly share code, notes, and snippets.

@kumarvipu1
Created February 3, 2021 16:36
Show Gist options
  • Save kumarvipu1/eb25015c53c5f7d87e40b8b82848712e to your computer and use it in GitHub Desktop.
Save kumarvipu1/eb25015c53c5f7d87e40b8b82848712e to your computer and use it in GitHub Desktop.
image classifier part 5
#model performance visualization
f = plt.figure(figsize=(20,8))
#accuracy
plt1 = f.add_subplot(121)
plt1.plot(history.history['accuracy'], label = str('Training accuracy'))
plt1.plot(history.history['val_accuracy'], label = str('Validation accuracy'))
plt.legend()
plt.title('accuracy')
#loss
plt2 = f.add_subplot(122)
plt2.plot(history.history['loss'], label = str('Training loss'))
plt2.plot(history.history['val_loss'], label = str('Validation loss'))
plt.legend()
plt.title('loss')
plt.show()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment