Created
September 4, 2020 11:44
-
-
Save kuntalchandra/a2d715efbd58b033242c02bc8fa872e0 to your computer and use it in GitHub Desktop.
Contains Duplicate III
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Given an array of integers, find out whether there are two distinct indices i and j in the array such that the | |
absolute difference between nums[i] and nums[j] is at most t and the absolute difference between i and j is at most k. | |
Example 1: | |
Input: nums = [1,2,3,1], k = 3, t = 0 | |
Output: true | |
Example 2: | |
Input: nums = [1,0,1,1], k = 1, t = 2 | |
Output: true | |
Example 3: | |
Input: nums = [1,5,9,1,5,9], k = 2, t = 3 | |
Output: false | |
""" | |
from typing import List | |
class Solution: | |
def containsNearbyAlmostDuplicate(self, nums: List[int], k: int, t: int) -> bool: | |
""" | |
Brute force. Time complexity: O(n * k) | |
40 / 41 test cases passed | |
""" | |
if not nums: | |
return False | |
for i in range(len(nums)): | |
for j in range(i + 1, i + k + 1): | |
if j >= len(nums): | |
break | |
if abs(nums[i] - nums[j]) <= t: | |
return True | |
return False | |
def contains_nearby_almost_duplicate_efficient( | |
self, nums: List[int], k: int, t: int | |
) -> bool: | |
""" | |
Bucket sort algo. Time complexity: O(n) | |
""" | |
if not nums: | |
return False | |
elif t < 0: | |
return False | |
cache = {} | |
for i in range(len(nums)): | |
if i - k > 0: | |
bucket_id = nums[i - k - 1] // (t + 1) | |
del cache[bucket_id] | |
bucket_id = nums[i] // (t + 1) | |
cond_1 = bucket_id in cache | |
cond_2 = bucket_id - 1 in cache and abs(cache[bucket_id - 1] - nums[i]) <= t | |
cond_3 = bucket_id + 1 in cache and abs(cache[bucket_id + 1] - nums[i]) <= t | |
if cond_1 or cond_2 or cond_3: | |
return True | |
cache[bucket_id] = nums[i] | |
return False |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment