Last active
June 10, 2019 19:58
-
-
Save kupp1/9faffbd6e7a385953aa80111239d4bea to your computer and use it in GitHub Desktop.
Python hls histogram equalization
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sys | |
from PIL import Image | |
import numpy as np | |
import colorsys as cs | |
im = Image.open(sys.argv[1]).convert('RGB') | |
rgb_array = np.array(im) | |
shape = rgb_array.shape | |
hls_list = [[0] * shape[1] for x in range(shape[0])] | |
hls_list = [[list(cs.rgb_to_hls(*[n / 255 for n in rgb_array[x][y]])) for y in range(shape[1])] for x in range(shape[0])] | |
del rgb_array | |
hls_array = np.array(hls_list).reshape(shape) | |
del hls_list | |
#s_list = [[0] * shape[1] for x in range(shape[0])] | |
#s_list = [[hls_array[x][y][2] for y in range(shape[1])] for x in range(shape[0])] | |
#s_array = np.array(s_list).reshape(shape[0:2]) | |
s_array = hls_array[:,:,2] | |
hist, bins = np.histogram(s_array.flatten(), 1000) | |
cdf = hist.cumsum() | |
cdf = float(sys.argv[2]) * cdf / cdf[-1] | |
s_new_array = np.interp(s_array.flatten(), bins[:-1], cdf).reshape(shape[0:2]) | |
del s_array | |
del hist | |
del bins | |
del cdf | |
hls_new_list = [[0] * shape[1] for x in range(shape[0])] | |
hls_new_list = [[(hls_array[x][y][0], hls_array[x][y][1], s_new_array[x][y]) for y in range(shape[1])] for x in range(shape[0])] | |
del hls_array | |
rgb_new_list = [[[n * 255 for n in cs.hls_to_rgb(*hls_new_list[x][y])] for y in range(shape[1])] for x in range(shape[0])] | |
rgb_new_array = np.round(np.array(rgb_new_list)).reshape(shape) | |
im1 = Image.fromarray(np.uint8(rgb_new_array), 'RGB') | |
im1.save('s_eq.jpg') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment