Created
September 2, 2018 16:27
-
-
Save kurianbenoy/e27e61d9cc913249f9e6e7bea4b2cd15 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# set the matplotlib backend so figures can be saved in the background | |
import matplotlib | |
matplotlib.use("Agg") | |
# import the necessary packages | |
from keras.preprocessing.image import ImageDataGenerator | |
from keras.optimizers import Adam | |
from keras.preprocessing.image import img_to_array | |
from sklearn.preprocessing import LabelBinarizer | |
from sklearn.model_selection import train_test_split | |
from myvgnet.smallervgnet import SmallerVGGNet | |
import matplotlib.pyplot as plt | |
from imutils import paths | |
import numpy as np | |
import argparse | |
import random | |
import pickle | |
import cv2 | |
import os | |
# construct the argument parse and parse the arguments | |
ap = argparse.ArgumentParser() | |
ap.add_argument("-d", "--dataset", required=True, | |
help="path to input dataset (i.e., directory of images)") | |
ap.add_argument("-m", "--model", required=True, | |
help="path to output model") | |
ap.add_argument("-l", "--labelbin", required=True, | |
help="path to output label binarizer") | |
ap.add_argument("-p", "--plot", type=str, default="plot.png", | |
help="path to output accuracy/loss plot") | |
args = vars(ap.parse_args()) | |
# initialize the number of epochs to train for, initial learning rate, | |
# batch size, and image dimensions | |
EPOCHS = 1000 | |
INIT_LR = 1e-3 | |
BS = 32 | |
IMAGE_DIMS = (240, 240, 3) | |
# initialize the data and labels | |
data = [] | |
labels = [] | |
# grab the image paths and randomly shuffle them | |
print("[INFO] loading images...") | |
imagePaths = sorted(list(paths.list_images(args["dataset"]))) | |
random.seed(42) | |
random.shuffle(imagePaths) | |
# loop over the input images | |
for imagePath in imagePaths: | |
# load the image, pre-process it, and store it in the data list | |
image = cv2.imread(imagePath) | |
image = cv2.resize(image, (IMAGE_DIMS[1], IMAGE_DIMS[0])) | |
image = img_to_array(image) | |
data.append(image) | |
# extract the class label from the image path and update the | |
# labels list | |
label = imagePath.split(os.path.sep)[-2] | |
labels.append(label) | |
# scale the raw pixel intensities to the range [0, 1] | |
data = np.array(data, dtype="float") / 255.0 | |
labels = np.array(labels) | |
print("[INFO] data matrix: {:.2f}MB".format( | |
data.nbytes / (1024 * 1000.0))) | |
# binarize the labels | |
lb = LabelBinarizer() | |
labels = lb.fit_transform(labels) | |
# partition the data into training and testing splits using 80% of | |
# the data for training and the remaining 20% for testing | |
(trainX, testX, trainY, testY) = train_test_split(data, | |
labels, test_size=0.2, random_state=42) | |
# construct the image generator for data augmentation | |
aug = ImageDataGenerator(rotation_range=25, width_shift_range=0.1, | |
height_shift_range=0.1, shear_range=0.2, zoom_range=0.2, | |
horizontal_flip=True, fill_mode="nearest") | |
# initialize the model | |
print("[INFO] compiling model...") | |
model = SmallerVGGNet.build(width=IMAGE_DIMS[1], height=IMAGE_DIMS[0], | |
depth=IMAGE_DIMS[2], classes=len(lb.classes_)) | |
opt = Adam(lr=INIT_LR, decay=INIT_LR / EPOCHS) | |
model.compile(loss="categorical_crossentropy", optimizer=opt, | |
metrics=["accuracy"]) | |
# train the network | |
print("[INFO] training network...") | |
H = model.fit_generator( | |
aug.flow(trainX, trainY, batch_size=BS), | |
validation_data=(testX, testY), | |
steps_per_epoch=len(trainX) // BS, | |
epochs=EPOCHS, verbose=1) | |
# save the model to disk | |
print("[INFO] serializing network...") | |
model.save(args["model"]) | |
# save the label binarizer to disk | |
print("[INFO] serializing label binarizer...") | |
f = open(args["labelbin"], "wb") | |
f.write(pickle.dumps(lb)) | |
f.close() | |
# plot the training loss and accuracy | |
plt.style.use("ggplot") | |
plt.figure() | |
N = EPOCHS | |
plt.plot(np.arange(0, N), H.history["loss"], label="train_loss") | |
plt.plot(np.arange(0, N), H.history["val_loss"], label="val_loss") | |
plt.plot(np.arange(0, N), H.history["acc"], label="train_acc") | |
plt.plot(np.arange(0, N), H.history["val_acc"], label="val_acc") | |
plt.title("Training Loss and Accuracy") | |
plt.xlabel("Epoch #") | |
plt.ylabel("Loss/Accuracy") | |
plt.legend(loc="upper left") | |
plt.savefig(args["plot"]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment