Skip to content

Instantly share code, notes, and snippets.

@kusal1990
Created June 2, 2022 18:15
Show Gist options
  • Save kusal1990/24bc4383792ef3f148f33846683bfe05 to your computer and use it in GitHub Desktop.
Save kusal1990/24bc4383792ef3f148f33846683bfe05 to your computer and use it in GitHub Desktop.
def filtering(x, alpha=50, beta=1):
x_new = np.zeros_like(x)
zero = x[0]
for i in range(1, len(x)):
zero = zero*(alpha-beta)/alpha + beta*x[i]/alpha
x_new[i] = x[i] - zero
return x_new
#Flattening a Normal signal
normal_signal_filter = [None] * 3
normal_signal_filter[0] = filtering(df_signal_train.loc[0].values)
normal_signal_filter[1] = filtering(df_signal_train.loc[1].values)
normal_signal_filter[2] = filtering(df_signal_train.loc[2].values)
#Code to plot normal signal with flattened faulty signal
f, ax = plt.subplots(1, 2, figsize=(24, 8))
ax[0].plot((df_signal_train.loc[0].values), alpha=0.7);
ax[0].plot((df_signal_train.loc[1].values), alpha=0.7);
ax[0].plot((df_signal_train.loc[2].values), alpha=0.7);
ax[0].set_title('Normal signal')
ax[0].set_ylim([-100, 100])
ax[1].plot((normal_signal_filter)[0], alpha=0.7);
ax[1].plot((normal_signal_filter)[1], alpha=0.7);
ax[1].plot((normal_signal_filter)[2], alpha=0.7);
ax[1].set_title('filtered Normal signal')
ax[1].set_ylim([-100, 100])
@kusal1990
Copy link
Author

ok

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment