Created
June 2, 2022 18:15
-
-
Save kusal1990/24bc4383792ef3f148f33846683bfe05 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def filtering(x, alpha=50, beta=1): | |
x_new = np.zeros_like(x) | |
zero = x[0] | |
for i in range(1, len(x)): | |
zero = zero*(alpha-beta)/alpha + beta*x[i]/alpha | |
x_new[i] = x[i] - zero | |
return x_new | |
#Flattening a Normal signal | |
normal_signal_filter = [None] * 3 | |
normal_signal_filter[0] = filtering(df_signal_train.loc[0].values) | |
normal_signal_filter[1] = filtering(df_signal_train.loc[1].values) | |
normal_signal_filter[2] = filtering(df_signal_train.loc[2].values) | |
#Code to plot normal signal with flattened faulty signal | |
f, ax = plt.subplots(1, 2, figsize=(24, 8)) | |
ax[0].plot((df_signal_train.loc[0].values), alpha=0.7); | |
ax[0].plot((df_signal_train.loc[1].values), alpha=0.7); | |
ax[0].plot((df_signal_train.loc[2].values), alpha=0.7); | |
ax[0].set_title('Normal signal') | |
ax[0].set_ylim([-100, 100]) | |
ax[1].plot((normal_signal_filter)[0], alpha=0.7); | |
ax[1].plot((normal_signal_filter)[1], alpha=0.7); | |
ax[1].plot((normal_signal_filter)[2], alpha=0.7); | |
ax[1].set_title('filtered Normal signal') | |
ax[1].set_ylim([-100, 100]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
ok