Created
June 2, 2022 18:34
-
-
Save kusal1990/6367342a604e608f062f7d30b39362fe to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# https://www.kaggle.com/suicaokhoailang/lstm-attention-baseline-0-652-lb | |
class Attention(Layer): | |
def __init__(self, step_dim, | |
W_regularizer=None, b_regularizer=None, | |
W_constraint=None, b_constraint=None, | |
bias=True, **kwargs): | |
self.supports_masking = True | |
self.init = initializers.get('glorot_uniform') | |
self.W_regularizer = regularizers.get(W_regularizer) | |
self.b_regularizer = regularizers.get(b_regularizer) | |
self.W_constraint = constraints.get(W_constraint) | |
self.b_constraint = constraints.get(b_constraint) | |
self.bias = bias | |
self.step_dim = step_dim | |
self.features_dim = 0 | |
super(Attention, self).__init__(**kwargs) | |
def build(self, input_shape): | |
assert len(input_shape) == 3 | |
self.W = self.add_weight(shape=(input_shape[-1],), | |
initializer=self.init, | |
name='{}_W'.format(self.name), | |
regularizer=self.W_regularizer, | |
constraint=self.W_constraint) | |
self.features_dim = input_shape[-1] | |
if self.bias: | |
self.b = self.add_weight(shape=(input_shape[1],), | |
initializer='zero', | |
name='{}_b'.format(self.name), | |
regularizer=self.b_regularizer, | |
constraint=self.b_constraint) | |
else: | |
self.b = None | |
self.built = True | |
def compute_mask(self, input, input_mask=None): | |
return None | |
def call(self, x, mask=None): | |
features_dim = self.features_dim | |
step_dim = self.step_dim | |
eij = K.reshape(K.dot(K.reshape(x, (-1, features_dim)), | |
K.reshape(self.W, (features_dim, 1))), (-1, step_dim)) | |
if self.bias: | |
eij += self.b | |
eij = K.tanh(eij) | |
a = K.exp(eij) | |
if mask is not None: | |
a *= K.cast(mask, K.floatx()) | |
a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx()) | |
a = K.expand_dims(a) | |
weighted_input = x * a | |
return K.sum(weighted_input, axis=1) | |
def compute_output_shape(self, input_shape): | |
return input_shape[0], self.features_dim | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
ok