Last active
July 17, 2016 02:22
-
-
Save kwatch/72d73f82196e2339b50c6cd8cb8f76e2 to your computer and use it in GitHub Desktop.
(obsolete) (ML) Example1
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # -*- coding: utf-8 -*- | |
| import sys | |
| import numpy as np | |
| class Perceptron(object): | |
| """Perceptron classifier. | |
| Parameters | |
| ------------ | |
| eta : float | |
| Learning rate (between 0.0 and 1.0) | |
| n_iter : int | |
| Passes over the training dataset. | |
| Attributes | |
| ----------- | |
| w_ : 1d-array | |
| Weights after fitting. | |
| errors_ : list | |
| Number of misclassifications in every epoch. | |
| """ | |
| def __init__(self, eta=0.01, n_iter=10): | |
| self.eta = eta | |
| self.n_iter = n_iter | |
| def fit(self, X, y): | |
| """Fit training data. | |
| Parameters | |
| ---------- | |
| X : {array-like}, shape = [n_samples, n_features] | |
| Training vectors, where n_samples is the number of samples and | |
| n_features is the number of features. | |
| y : array-like, shape = [n_samples] | |
| Target values. | |
| Returns | |
| ------- | |
| self : object | |
| """ | |
| if hasattr(X, 'shape'): | |
| n_features = X.shape[1] | |
| else: | |
| n_features = len(X[0]) | |
| #print(n_features) #=> 2 | |
| self.w_ = np.zeros(1 + n_features) | |
| #print(self.w_) #=> [0.0 0.0 0.0] <numpy.ndarray> | |
| sys.stderr.write("\033[0;31m*** debug: self.w_=%r\033[0m\n" % (self.w_, )) | |
| self.errors_ = [] | |
| for _ in range(self.n_iter): | |
| errors = 0 | |
| for xi, target in zip(X, y): | |
| #print(xi) #=> ex: [5.1 1.4] <numpy.ndarray> | |
| #print(target) #=> -1 or 1 <int> | |
| #print(self.predict(xi)) #=> [1] or [-1] <numpy.ndarray> | |
| #print(target - self.predict(xi)) #=> -2 or 2 or 0 <numpy.int64> | |
| update = self.eta * (target - self.predict(xi)) | |
| #print(update) #=> -0.2 or 0.2 or 0.0 <numpy.float64> | |
| #print(update * xi) #=> ex: [-1.02 -0.28] (= -0.2 * [5.1 1.4]) | |
| self.w_[1:] += update * xi | |
| self.w_[0] += update | |
| #print(self.w_[0]) #=> ex: -0.2, 0.0, -0.4 | |
| #print(update != 0.0) #=> False or True | |
| #print(int(update != 0.0)) #=> 0 or 1 | |
| errors += int(update != 0.0) | |
| #print(errors) #=> ex: 2 2 3 2 1 0 0 0 0 0 | |
| self.errors_.append(errors) | |
| sys.stderr.write("\033[0;31m*** debug: self.errors_=%r\033[0m\n" % (self.errors_, )) | |
| #print(self.errors_) #=> ex: [2, 2, 3, 2, 1, 0, 0, 0, 0, 0] <list> | |
| #print(self.w_) #=> ex: [-0.4 -0.68 1.82] <numpy.ndarray> | |
| return self | |
| def net_input(self, X): | |
| """Calculate net input""" | |
| #print(X) #=> ex: [5.1 1.4], [4.9 1.4], [4.7 1.3], ... | |
| #print(self.w_) #=> ex: [0.0 0.0 0.0], [-0.2 -1.02 -0.28], ..., [0.0 0.38 0.66] [-0.2 -0.64 0.38], [0.0 0.76 1.32], [-0.4 -1.18 0.74], ..., [-0.4 -0.68 1.82] | |
| #sys.stderr.write("\033[0;31m*** debug: self.w_[1:]=%r\033[0m\n" % (self.w_[1:], )) | |
| #sys.stderr.write("\033[0;31m*** debug: X=%r\033[0m\n" % (X, )) | |
| #sys.stderr.write("\033[0;31m*** debug: self.w_[1:]=%r\033[0m\n" % (self.w_[1:], )) | |
| #sys.stderr.write("\033[0;31m*** debug: self.w_[0]=%r\033[0m\n" % (self.w_[0], )) | |
| # ex: ret = -5.56 (= [4.9, 1.4] * [-1.02, -0.28] + (-0.2)) | |
| ret = np.dot(X, self.w_[1:]) + self.w_[0] | |
| #sys.stderr.write("\033[0;31m*** debug: ret=%r\033[0m\n" % (ret, )) | |
| return np.dot(X, self.w_[1:]) + self.w_[0] | |
| def predict(self, X): | |
| """Return class label after unit step""" | |
| predict = np.where(self.net_input(X) >= 0.0, 1, -1) | |
| #print(predict) #=> array(1) or array(-1) <numpy.ndarray> | |
| return predict | |
| class Perceptron2(object): | |
| def __init__(self, eta=0.01, n_iter=10): | |
| assert 0.0 < eta <= 1.0 | |
| self.eta = eta # 学習率 (0.0 < eta <= 1.0) | |
| self.n_iter = n_iter # 繰り返し回数 | |
| def fit(self, input__, expected_): | |
| assert len(input__) == len(expected_) | |
| n_features = len(input__[0]) # ex: 2 | |
| weight_ = [0.0] * (n_features + 1) # ex: [0.0, 0.0, 0.0] | |
| errors_ = [] | |
| eta = self.eta # 学習率 (0.0 < eta <= 1.0) | |
| for _ in range(self.n_iter): | |
| error_count = 0 | |
| for input_, expected in zip(input__, expected_): | |
| z = self.net_input(input_, weight_) | |
| guess = self.predict(z) #=> 1 or -1 | |
| if expected != guess: | |
| #print(expected - guess) #=> 2 or -2 | |
| update = eta * (expected - guess) | |
| #print(update) #=> 0.2 or -0.2 | |
| weight_[0] += update * 1.0 | |
| i = 0 | |
| for x in input_: # or: for i, x in enumerate(input_, 1) | |
| i += 1 | |
| weight_[i] += update * x | |
| error_count += 1 | |
| errors_.append(error_count) | |
| #print(errors_) #=> ex: [2, 2, 3, 2, 1, 0, 0, 0, 0, 0] <list> | |
| #print(weight_) #=> ex: [-0.4 -0.68 1.82] <numpy.ndarray> | |
| self.w_ = weight_ | |
| self.errors_ = errors_ | |
| return self | |
| def net_input(self, input_, weight_): | |
| assert len(input_) + 1 == len(weight_) | |
| #z = 1.0 * weight_[0] | |
| #for x, w in zip(input_, weight_[1:]): | |
| # z += x * w | |
| z = 1.0 * weight_[0] + \ | |
| sum( x * w for x, w in zip(input_, weight_[1:]) ) | |
| return z | |
| def predict(self, z): | |
| if z >= 0.0: | |
| return 1 # 'Iris-virsicolor' | |
| else: | |
| return -1 # 'Iris-setosa' |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment