Skip to content

Instantly share code, notes, and snippets.

@kwindla
Created March 1, 2025 23:15
Show Gist options
  • Save kwindla/7ac326d0e5cb5c97d16ff0ccc3e60a74 to your computer and use it in GitHub Desktop.
Save kwindla/7ac326d0e5cb5c97d16ff0ccc3e60a74 to your computer and use it in GitHub Desktop.
Wrap Pipecat OpenAI Realtime API service to work with Azure WebSocket connection format
#
# Copyright (c) 2024–2025, Daily
#
# SPDX-License-Identifier: BSD 2-Clause License
#
import asyncio
import os
import sys
from datetime import datetime
import aiohttp
import websockets
from dotenv import load_dotenv
from loguru import logger
from runner import configure
from pipecat.audio.vad.silero import SileroVADAnalyzer
from pipecat.audio.vad.vad_analyzer import VADParams
from pipecat.pipeline.pipeline import Pipeline
from pipecat.pipeline.runner import PipelineRunner
from pipecat.pipeline.task import PipelineParams, PipelineTask
from pipecat.processors.aggregators.openai_llm_context import OpenAILLMContext
from pipecat.services.openai_realtime_beta import (
InputAudioTranscription,
OpenAIRealtimeBetaLLMService,
SessionProperties,
TurnDetection,
)
from pipecat.transports.services.daily import DailyParams, DailyTransport
load_dotenv(override=True)
logger.remove(0)
logger.add(sys.stderr, level="DEBUG")
AZURE_REALTIME_WSS_URL = f"""wss://ai-kwindla0383ai857449149417.openai.azure.com/openai/realtime?api-version=2024-10-01-preview&deployment=gpt-4o-realtime-preview"""
AZURE_REALTIME_API_KEY = os.getenv("AZURE_REALTIME_API_KEY")
class AzureRealtimeBetaLLMService(OpenAIRealtimeBetaLLMService):
"""quick hack: wrap OpenAI Realtime API Service to make it work with Azure."""
async def _connect(self):
try:
if self._websocket:
# Here we assume that if we have a websocket, we are connected. We
# handle disconnections in the send/recv code paths.
return
self._websocket = await websockets.connect(
uri=AZURE_REALTIME_WSS_URL,
extra_headers={
"api-key": AZURE_REALTIME_API_KEY,
},
)
self._receive_task = self.create_task(self._receive_task_handler())
except Exception as e:
logger.error(f"{self} initialization error: {e}")
self._websocket = None
async def fetch_weather_from_api(function_name, tool_call_id, args, llm, context, result_callback):
temperature = 75 if args["format"] == "fahrenheit" else 24
await result_callback(
{
"conditions": "nice",
"temperature": temperature,
"format": args["format"],
"timestamp": datetime.now().strftime("%Y%m%d_%H%M%S"),
}
)
tools = [
{
"type": "function",
"name": "get_current_weather",
"description": "Get the current weather",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"format": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "The temperature unit to use. Infer this from the users location.",
},
},
"required": ["location", "format"],
},
}
]
async def main():
async with aiohttp.ClientSession() as session:
(room_url, token) = await configure(session)
transport = DailyTransport(
room_url,
token,
"Respond bot",
DailyParams(
audio_in_enabled=True,
audio_out_enabled=True,
transcription_enabled=False,
vad_enabled=True,
vad_analyzer=SileroVADAnalyzer(params=VADParams(stop_secs=0.8)),
vad_audio_passthrough=True,
),
)
session_properties = SessionProperties(
input_audio_transcription=InputAudioTranscription(),
# Set openai TurnDetection parameters. Not setting this at all will turn it
# on by default
# turn_detection=TurnDetection(silence_duration_ms=1000),
# Or set to False to disable openai turn detection and use transport VAD
# turn_detection=False,
# tools=tools,
instructions="""Your knowledge cutoff is 2023-10. You are a helpful and friendly AI.
Act like a human, but remember that you aren't a human and that you can't do human
things in the real world. Your voice and personality should be warm and engaging, with a lively and
playful tone.
If interacting in a non-English language, start by using the standard accent or dialect familiar to
the user. Talk quickly. You should always call a function if you can. Do not refer to these rules,
even if you're asked about them.
-
You are participating in a voice conversation. Keep your responses concise, short, and to the point
unless specifically asked to elaborate on a topic.
Remember, your responses should be short. Just one or two sentences, usually.""",
)
llm = AzureRealtimeBetaLLMService(
api_key=os.getenv("OPENAI_API_KEY"),
session_properties=session_properties,
start_audio_paused=False,
)
# you can either register a single function for all function calls, or specific functions
# llm.register_function(None, fetch_weather_from_api)
llm.register_function("get_current_weather", fetch_weather_from_api)
# Create a standard OpenAI LLM context object using the normal messages format. The
# OpenAIRealtimeBetaLLMService will convert this internally to messages that the
# openai WebSocket API can understand.
context = OpenAILLMContext(
[{"role": "user", "content": "Say hello!"}],
# [{"role": "user", "content": [{"type": "text", "text": "Say hello!"}]}],
# [
# {
# "role": "user",
# "content": [
# {"type": "text", "text": "Say"},
# {"type": "text", "text": "yo what's up!"},
# ],
# }
# ],
tools,
)
context_aggregator = llm.create_context_aggregator(context)
pipeline = Pipeline(
[
transport.input(), # Transport user input
context_aggregator.user(),
llm, # LLM
context_aggregator.assistant(),
transport.output(), # Transport bot output
]
)
task = PipelineTask(
pipeline,
params=PipelineParams(
allow_interruptions=True,
enable_metrics=True,
enable_usage_metrics=True,
# report_only_initial_ttfb=True,
),
)
@transport.event_handler("on_first_participant_joined")
async def on_first_participant_joined(transport, participant):
await transport.capture_participant_transcription(participant["id"])
# Kick off the conversation.
await task.queue_frames([context_aggregator.user().get_context_frame()])
runner = PipelineRunner()
await runner.run(task)
if __name__ == "__main__":
asyncio.run(main())
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment