Created
July 18, 2014 23:13
-
-
Save kyagrd/970a0e5d8eb90b5ca155 to your computer and use it in GitHub Desktop.
Mender-style in Agda (without positifity/termination checks)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{-# OPTIONS --no-positivity-check --no-termination-check #-} | |
module Mendler where | |
open import Data.Bool | |
-- open import Data.Product | |
-- open import Data.String | |
data μ (F : Set → Set) : Set where | |
In : F (μ F) → μ F | |
mit : ∀{F}{a : Set} → (∀{r} → (r → a) → F r → a) → μ F → a | |
mit φ (In x) = φ (mit φ) x | |
data μ' (F : Set → Set) (a : Set) : Set where | |
In' : F (μ' F a) → μ' F a | |
Inv : a → μ' F a | |
msfit' : ∀{F}{a} → | |
(∀{r} → (a → r a) → (r a → a) → F (r a) → a) → μ' F a → a | |
msfit' φ (In' x) = φ Inv (msfit' φ) x | |
msfit' φ (Inv v) = v | |
msfit : ∀{F}{a} → | |
(∀{r} → (a → r a) → (r a → a) → F (r a) → a) → (∀{a} → μ' F a) → a | |
msfit φ r = msfit' φ r | |
data N r : Set where | |
Z : N r | |
S : r → N r | |
Nat = μ N | |
zero : Nat | |
zero = In Z | |
succ : Nat → Nat | |
succ n = In (S n) | |
one = succ zero | |
two = succ one | |
three = succ two | |
plusφ : ∀{r} → (r → Nat → Nat) → N r → Nat → Nat | |
plusφ plus Z m = m | |
plusφ plus (S n) m = succ (plus n m) | |
plus = mit plusφ | |
nnn = plus two three | |
data L a r : Set where | |
Nil : L a r | |
Cons : a → r → L a r | |
List = λ a → μ (L a) | |
nil : ∀{a} → List a | |
nil = In Nil | |
cons : ∀{a} → a → List a → List a | |
cons x xs = In (Cons x xs) | |
l1 = cons true nil | |
l2 = cons false l2 | |
data E r : Set where | |
App : r → E r | |
Lam : (r → r) → E r | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment