Last active
August 19, 2018 20:27
-
-
Save kyagrd/baec86f84b14ec596b0ce4467f0a2103 to your computer and use it in GitHub Desktop.
SIGPL2018Summer
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module pic. %% file "pic.mod" | |
% eq X X. | |
% neq X Y :- eq X Y => fail. | |
one (inp X P) (dn X Y) (P Y). | |
one (out X Y P) (up X Y) P. | |
one (taup P) tau P. | |
one (par P Q) A (par P1 Q) :- one P A P1. | |
one (par P Q) A (par P Q1) :- one Q A Q1. | |
one (par P Q) tau (par P1 Q1) :- one P (up X Y) P1 | |
, one Q (dn X Y) Q1. | |
one (par P Q) tau (par P1 Q1) :- one P (dn X Y) P1 | |
, one Q (up X Y) Q1. | |
one (plus P Q) A P1 :- one P A P1. | |
one (plus P Q) A Q1 :- one Q A Q1. | |
one (nu P) A (nu Q) :- pi x\ one (P x) A (Q x). | |
one (mat X X P) A Q :- one P A Q. | |
% one (mis X Y P) A Q :- neq X Y, one P A Q. | |
%%%% scope extrusion %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
oneb (nu P) (up X) Q :- pi y\ one (P y) (up X y) (Q y). % open | |
one (par P Q) tau (nu y\ par (P1 y) Q1) :- % close | |
oneb P (up X) P1, (pi y\ one Q (dn X y) Q1). | |
one (par P Q) tau (nu y\ par P1 (Q1 y)) :- % close | |
(pi y\ one P (dn X y) P1), oneb Q (up X) Q1. | |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
oneb (par P Q) A (x\ par (P1 x) Q) :- oneb P A P1. | |
oneb (par P Q) A (x\ par P (Q1 x)) :- oneb Q A Q1. | |
oneb (plus P Q) A P1 :- oneb P A P1. | |
oneb (plus P Q) A Q1 :- oneb Q A Q1. | |
oneb (nu P) A (y\nu x\Q x y) :- pi x\ oneb (P x) A (y\Q x y). | |
oneb (mat X X P) A Q :- oneb P A Q. | |
% oneb (mis X Y P) A Q :- neq X Y, oneb P A Q. |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
sig pic. %% file "pic.sig" | |
kind n type. | |
kind p type. | |
kind a type. | |
type a, b n. | |
type up n -> n -> a. | |
type dn n -> n -> a. | |
type tau a. | |
type null p. | |
type inp n -> (n -> p) -> p. | |
type out n -> n -> p -> p. | |
type taup p -> p. | |
type par p -> p -> p. | |
type plus p -> p -> p. | |
type nu (n -> p) -> p. | |
type mat n -> n -> p -> p. | |
% type mis n -> n -> p -> p. | |
% type fail o. | |
% type eq n -> n -> o. | |
% type neq n -> n -> o. | |
type one p -> a -> p -> o. | |
type oneb p -> (n -> a) -> (n -> p) -> o. |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Specification "pic". | |
CoDefine bisim : p -> p -> prop by | |
bisim P Q | |
:= (forall A P1, {one P A P1} -> exists Q1, {one Q A Q1} /\ bisim P1 Q1) | |
/\ (forall X P1, {oneb P (up X) P1} -> exists Q1, {oneb Q (up X) Q1} /\ | |
nabla w, bisim (P1 w) (Q1 w)) | |
/\ (forall A Q1, {one Q A Q1} -> exists P1, {one P A P1} /\ bisim Q1 P1) | |
/\ (forall X Q1, {oneb Q (up X) Q1} -> exists P1, {oneb P (up X) P1} /\ | |
nabla w, bisim (P1 w) (Q1 w)). | |
% Bisimulation is an equivalence | |
Theorem bisim_refl : forall P, bisim P P. | |
abort. | |
Theorem bisim_sym : forall P Q, bisim P Q -> bisim Q P. | |
abort. | |
Theorem bisim_trans : forall P Q R, bisim P Q -> bisim Q R -> bisim P R. | |
abort. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment