Skip to content

Instantly share code, notes, and snippets.

@kyamagu
Last active November 10, 2016 23:53
Show Gist options
  • Save kyamagu/12bbc2b298725f24765e38ef2cbe2c7f to your computer and use it in GitHub Desktop.
Save kyamagu/12bbc2b298725f24765e38ef2cbe2c7f to your computer and use it in GitHub Desktop.
Caffe baseline model with AlexNet for CelebA dataset
name: "celeba_alexnet_independent"
layer {
name: "data"
type: "Data"
top: "data"
include {
phase: TRAIN
}
transform_param {
mirror: true
mean_file: "data/celeba/mean.binaryproto"
}
data_param {
source: "data/celeba/train-images.lmdb"
batch_size: 128
backend: LMDB
}
}
layer {
name: "labels"
type: "Data"
top: "labels"
include {
phase: TRAIN
}
data_param {
source: "data/celeba/train-labels.lmdb"
batch_size: 128
backend: LMDB
}
}
layer {
name: "data"
type: "Data"
top: "data"
include {
phase: TEST
}
transform_param {
mirror: true
mean_file: "data/celeba/mean.binaryproto"
}
data_param {
source: "data/celeba/val-images.lmdb"
batch_size: 128
backend: LMDB
}
}
layer {
name: "labels"
type: "Data"
top: "labels"
include {
phase: TEST
}
data_param {
source: "data/celeba/val-labels.lmdb"
batch_size: 128
backend: LMDB
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 96
pad: 0
kernel_size: 11
stride: 4
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "norm1"
type: "LRN"
bottom: "conv1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "norm1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 2
kernel_size: 5
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "norm2"
type: "LRN"
bottom: "conv2"
top: "norm2"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "norm2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "pool2"
top: "conv3"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "fc6r"
type: "InnerProduct"
bottom: "pool5"
top: "fc6r"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
inner_product_param {
num_output: 4096
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6r"
top: "fc6r"
}
layer {
name: "drop6"
type: "Dropout"
bottom: "fc6r"
top: "fc6r"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc7r"
type: "InnerProduct"
bottom: "fc6r"
top: "fc7r"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
inner_product_param {
num_output: 4096
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7r"
top: "fc7r"
}
layer {
name: "drop7"
type: "Dropout"
bottom: "fc7r"
top: "fc7r"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "score0"
type: "InnerProduct"
bottom: "fc7r"
top: "score0"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score1"
type: "InnerProduct"
bottom: "fc7r"
top: "score1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score2"
type: "InnerProduct"
bottom: "fc7r"
top: "score2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score3"
type: "InnerProduct"
bottom: "fc7r"
top: "score3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score4"
type: "InnerProduct"
bottom: "fc7r"
top: "score4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score5"
type: "InnerProduct"
bottom: "fc7r"
top: "score5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score6"
type: "InnerProduct"
bottom: "fc7r"
top: "score6"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score7"
type: "InnerProduct"
bottom: "fc7r"
top: "score7"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score8"
type: "InnerProduct"
bottom: "fc7r"
top: "score8"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score9"
type: "InnerProduct"
bottom: "fc7r"
top: "score9"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score10"
type: "InnerProduct"
bottom: "fc7r"
top: "score10"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score11"
type: "InnerProduct"
bottom: "fc7r"
top: "score11"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score12"
type: "InnerProduct"
bottom: "fc7r"
top: "score12"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score13"
type: "InnerProduct"
bottom: "fc7r"
top: "score13"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score14"
type: "InnerProduct"
bottom: "fc7r"
top: "score14"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score15"
type: "InnerProduct"
bottom: "fc7r"
top: "score15"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score16"
type: "InnerProduct"
bottom: "fc7r"
top: "score16"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score17"
type: "InnerProduct"
bottom: "fc7r"
top: "score17"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score18"
type: "InnerProduct"
bottom: "fc7r"
top: "score18"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score19"
type: "InnerProduct"
bottom: "fc7r"
top: "score19"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score20"
type: "InnerProduct"
bottom: "fc7r"
top: "score20"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score21"
type: "InnerProduct"
bottom: "fc7r"
top: "score21"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score22"
type: "InnerProduct"
bottom: "fc7r"
top: "score22"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score23"
type: "InnerProduct"
bottom: "fc7r"
top: "score23"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score24"
type: "InnerProduct"
bottom: "fc7r"
top: "score24"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score25"
type: "InnerProduct"
bottom: "fc7r"
top: "score25"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score26"
type: "InnerProduct"
bottom: "fc7r"
top: "score26"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score27"
type: "InnerProduct"
bottom: "fc7r"
top: "score27"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score28"
type: "InnerProduct"
bottom: "fc7r"
top: "score28"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score29"
type: "InnerProduct"
bottom: "fc7r"
top: "score29"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score30"
type: "InnerProduct"
bottom: "fc7r"
top: "score30"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score31"
type: "InnerProduct"
bottom: "fc7r"
top: "score31"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score32"
type: "InnerProduct"
bottom: "fc7r"
top: "score32"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score33"
type: "InnerProduct"
bottom: "fc7r"
top: "score33"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score34"
type: "InnerProduct"
bottom: "fc7r"
top: "score34"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score35"
type: "InnerProduct"
bottom: "fc7r"
top: "score35"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score36"
type: "InnerProduct"
bottom: "fc7r"
top: "score36"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score37"
type: "InnerProduct"
bottom: "fc7r"
top: "score37"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score38"
type: "InnerProduct"
bottom: "fc7r"
top: "score38"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "score39"
type: "InnerProduct"
bottom: "fc7r"
top: "score39"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "Reshape1"
type: "Reshape"
bottom: "score0"
top: "Reshape1"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape2"
type: "Reshape"
bottom: "score1"
top: "Reshape2"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape3"
type: "Reshape"
bottom: "score2"
top: "Reshape3"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape4"
type: "Reshape"
bottom: "score3"
top: "Reshape4"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape5"
type: "Reshape"
bottom: "score4"
top: "Reshape5"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape6"
type: "Reshape"
bottom: "score5"
top: "Reshape6"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape7"
type: "Reshape"
bottom: "score6"
top: "Reshape7"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape8"
type: "Reshape"
bottom: "score7"
top: "Reshape8"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape9"
type: "Reshape"
bottom: "score8"
top: "Reshape9"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape10"
type: "Reshape"
bottom: "score9"
top: "Reshape10"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape11"
type: "Reshape"
bottom: "score10"
top: "Reshape11"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape12"
type: "Reshape"
bottom: "score11"
top: "Reshape12"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape13"
type: "Reshape"
bottom: "score12"
top: "Reshape13"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape14"
type: "Reshape"
bottom: "score13"
top: "Reshape14"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape15"
type: "Reshape"
bottom: "score14"
top: "Reshape15"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape16"
type: "Reshape"
bottom: "score15"
top: "Reshape16"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape17"
type: "Reshape"
bottom: "score16"
top: "Reshape17"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape18"
type: "Reshape"
bottom: "score17"
top: "Reshape18"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape19"
type: "Reshape"
bottom: "score18"
top: "Reshape19"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape20"
type: "Reshape"
bottom: "score19"
top: "Reshape20"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape21"
type: "Reshape"
bottom: "score20"
top: "Reshape21"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape22"
type: "Reshape"
bottom: "score21"
top: "Reshape22"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape23"
type: "Reshape"
bottom: "score22"
top: "Reshape23"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape24"
type: "Reshape"
bottom: "score23"
top: "Reshape24"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape25"
type: "Reshape"
bottom: "score24"
top: "Reshape25"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape26"
type: "Reshape"
bottom: "score25"
top: "Reshape26"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape27"
type: "Reshape"
bottom: "score26"
top: "Reshape27"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape28"
type: "Reshape"
bottom: "score27"
top: "Reshape28"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape29"
type: "Reshape"
bottom: "score28"
top: "Reshape29"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape30"
type: "Reshape"
bottom: "score29"
top: "Reshape30"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape31"
type: "Reshape"
bottom: "score30"
top: "Reshape31"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape32"
type: "Reshape"
bottom: "score31"
top: "Reshape32"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape33"
type: "Reshape"
bottom: "score32"
top: "Reshape33"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape34"
type: "Reshape"
bottom: "score33"
top: "Reshape34"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape35"
type: "Reshape"
bottom: "score34"
top: "Reshape35"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape36"
type: "Reshape"
bottom: "score35"
top: "Reshape36"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape37"
type: "Reshape"
bottom: "score36"
top: "Reshape37"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape38"
type: "Reshape"
bottom: "score37"
top: "Reshape38"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape39"
type: "Reshape"
bottom: "score38"
top: "Reshape39"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "Reshape40"
type: "Reshape"
bottom: "score39"
top: "Reshape40"
reshape_param {
shape {
dim: 128
dim: 2
dim: 1
}
}
}
layer {
name: "marginal"
type: "Concat"
bottom: "Reshape1"
bottom: "Reshape2"
bottom: "Reshape3"
bottom: "Reshape4"
bottom: "Reshape5"
bottom: "Reshape6"
bottom: "Reshape7"
bottom: "Reshape8"
bottom: "Reshape9"
bottom: "Reshape10"
bottom: "Reshape11"
bottom: "Reshape12"
bottom: "Reshape13"
bottom: "Reshape14"
bottom: "Reshape15"
bottom: "Reshape16"
bottom: "Reshape17"
bottom: "Reshape18"
bottom: "Reshape19"
bottom: "Reshape20"
bottom: "Reshape21"
bottom: "Reshape22"
bottom: "Reshape23"
bottom: "Reshape24"
bottom: "Reshape25"
bottom: "Reshape26"
bottom: "Reshape27"
bottom: "Reshape28"
bottom: "Reshape29"
bottom: "Reshape30"
bottom: "Reshape31"
bottom: "Reshape32"
bottom: "Reshape33"
bottom: "Reshape34"
bottom: "Reshape35"
bottom: "Reshape36"
bottom: "Reshape37"
bottom: "Reshape38"
bottom: "Reshape39"
bottom: "Reshape40"
top: "marginal"
concat_param {
axis: 2
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "marginal"
bottom: "labels"
top: "loss"
}
@masaff
Copy link

masaff commented Nov 10, 2016

Hi,
I'm new to deep learning. I want to fine-tune a large number of layers. How should I do that? should I change the lr_mult in those layers? should I change them to some numbers larger that 1? What about decay_lr? why all of decay_lr are equal to zero? I just changed last layer's name and the number of outputs and also set the lr_mult to 10. I'm so confused can you lease help me?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment