Setup instructions for the Ubuntu 16.04 workstations and servers in the laboratory environment. Replace systemctl
with Upstart start|stop
for Ubuntu 14.04.
sudo tee /etc/sudoers.d/administrator <<EOF
administrator ALL=(ALL) NOPASSWD: ALL
EOF
import lmdb | |
import leveldb | |
def lmdb_reader(filename, **kwargs): | |
with lmdb.open(filename, readonly=True, create=False, **kwargs) as env: | |
with env.begin() as txn: | |
with txn.cursor() as cursor: | |
for key, value in cursor: | |
yield key, value |
// Caffe proto converter. | |
// | |
// Build. | |
// | |
// mex -I/path/to/matlab-lmdb/include ... | |
// -I/path/to/caffe/build/src/caffe/proto ... | |
// caffe_proto_.cc ... | |
// /path/to/caffe/build/src/caffe/proto/caffe.pb.o ... | |
// -lprotobuf CXXFLAGS="$CXXFLAGS -std=c++11" | |
// |
# set SGE environment if exists | |
ACTIVE_JOBS_DIR=/var/spool/gridengine/execd/$(hostname)/active_jobs/ | |
if [ -d $ACTIVE_JOBS_DIR ]; then | |
PARENT_PID=$(ps -p $(ps -p $$ -o ppid --no-header) -o ppid --no-header) | |
for job_dir in $(ls -1 $ACTIVE_JOBS_DIR); do | |
JOB_PID=$(cat $ACTIVE_JOBS_DIR$job_dir/job_pid) | |
if [ $JOB_PID -eq $PARENT_PID ]; then | |
echo . $ACTIVE_JOBS_DIR$job_dir/environment | |
. $ACTIVE_JOBS_DIR$job_dir/environment | |
break |
name: "celeba_alexnet_independent" | |
layer { | |
name: "data" | |
type: "Data" | |
top: "data" | |
include { | |
phase: TRAIN | |
} | |
transform_param { | |
mirror: true |
''' | |
Plot iteration information from the log file. | |
Usage | |
python examples/message_passing/plot_iteration.py solver.log | |
''' | |
import argparse |
#!/usr/bin/env python | |
'''Caffe ResNet NetSpec example. | |
Compatible with Kaiming He's pre-trained models. | |
https://github.com/KaimingHe/deep-residual-networks | |
''' | |
import sys |
#!/usr/bin/env python | |
''' | |
Example: | |
python data/celeba/scripts/build_dataset.py \ | |
--output_dir data/celeba/ | |
./build/tools/compute_image_mean \ | |
data/celeba/train-images.lmdb \ | |
data/celeba/mean.binaryproto |
""" | |
Use in PyTorch. | |
""" | |
def accuracy(output, target): | |
"""Computes the accuracy for multiple binary predictions""" | |
pred = output >= 0.5 | |
truth = target >= 0.5 | |
acc = pred.eq(truth).sum() / target.numel() | |
return acc |