Created
June 29, 2014 17:37
-
-
Save kybernetikos/a264fba207527d775032 to your computer and use it in GitHub Desktop.
Asteroids: Machine Learning
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
try { | |
var WAIT = "wait" | |
var FIRE = "fire" | |
var ACTIONS = [WAIT, FIRE] | |
if (!context.classesDefined) { | |
context.classesDefined = true; | |
context.WorldState = function WorldState(numberOfAsteroids, asteroidX, asteroidVx, fired) { | |
this.asteroidX = asteroidX | |
this.asteroidVx = asteroidVx | |
this.numberOfAsteroids = numberOfAsteroids | |
this.fired = fired | |
} | |
var Approximator = context.Approximator = function Approximator(funcs) { | |
this.funcs = funcs | |
this.weights = [] | |
for (var i = 0; i < this.funcs.length; ++i) { | |
this.weights[i] = Math.random() | |
} | |
} | |
Approximator.prototype.evaluateState = function(state) { | |
return this.funcs.map(function(func, i) { | |
return func(state) * this.weights[i] | |
}.bind(this)).reduce(function(a, b) { | |
return a + b | |
}) | |
} | |
// state is state in which we made the decision | |
// reward is positive or negative | |
Approximator.prototype.correct = function(state, reward) { | |
var totalScore = this.evaluateState(state) | |
var correctionAmount = reward - totalScore | |
var learningParam = 0.1 | |
console.log('correcting', state, reward) | |
this.weights = this.weights.map(function(weight, i) { | |
var func = this.funcs[i] | |
var fnScore = func(state) | |
return weight + correctionAmount * learningParam * fnScore | |
}.bind(this)) | |
} | |
var Decision = context.Decision = function Decision(state, action) { | |
this.state = state; | |
this.action = action; | |
} | |
var Agent = context.Agent = function Agent(approximator, timeFn) { | |
this.decisions = [] | |
this.approximator = approximator | |
this.timeFired = null | |
} | |
Agent.prototype.actualScoreFinalState = function(score) { | |
this.decisions.map(function(decision, i) { | |
this.approximator.correct(decision.state, score - (this.decisions.length - i)) | |
}.bind(this)) | |
this.decisions = [] | |
this.timeFired = null | |
} | |
Agent.prototype.tick = function(time, state) { | |
console.log(time, state) | |
if (state.fired === false) { | |
var chosenAction = this.chooseAction(state) | |
this.performAction(time, state, chosenAction) | |
} | |
if (state.asteroidCount === 0) { | |
/// WHOOOO HOOOO! | |
this.actualScoreFinalState(1000) | |
} else if (this.timeFired != null && time >= this.timeFired + 80) { | |
//// OH NOOES! | |
this.actualScoreFinalState(-100) | |
} | |
} | |
Agent.prototype.performAction = function(time, state, action) { | |
var decision = new Decision(Object.create(state), action) | |
this.decisions.push(decision) | |
if (action === FIRE) { | |
decision.state.fired = true | |
this.timeFired = time | |
fire() | |
} | |
} | |
Agent.prototype.chooseAction = function(currentState) { | |
var firedState = Object.create(currentState, {fired: {value: true}}) | |
var notfiredState = Object.create(currentState, {fired: {value: false}}) | |
var firedScore = this.approximator.evaluateState(firedState) | |
var notfiredScore = this.approximator.evaluateState(notfiredState) | |
if (firedScore > notfiredScore && currentState.fired === false) { | |
return FIRE | |
} | |
return WAIT | |
} | |
context.agent = new context.Agent(new context.Approximator([ | |
function(state) { | |
return state.fired ? 1 : 0 | |
}, | |
function(state) { | |
return state.asteroidX; | |
} | |
])) | |
} | |
///////////////////////////////////////////////// | |
context.agent.tick(time, new context.WorldState(asteroids.length, asteroids[0].x, asteroids[0].speed, context.agent.timeFired !== null)) | |
} catch (e) { | |
console.log(e) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment