Created
December 21, 2013 01:39
-
-
Save kylebgorman/8064310 to your computer and use it in GitHub Desktop.
Triangular (square) matrix class for Python, using only half as much memory. Supports decent portions of what you'd expect for a numpy object
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python -O | |
# | |
# Copyright (c) 2013 Kyle Gorman | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a | |
# copy of this software and associated documentation files (the | |
# "Software"), to deal in the Software without restriction, including | |
# without limitation the rights to use, copy, modify, merge, publish, | |
# distribute, sublicense, and/or sell copies of the Software, and to | |
# permit persons to whom the Software is furnished to do so, subject to | |
# the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be included | |
# in all copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS | |
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | |
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. | |
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY | |
# CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, | |
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE | |
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
# | |
# triangle.py: class for storing numbers in a matrix "triangle" | |
# Kyle Gorman <[email protected]> | |
# | |
# Inspiration comes from: | |
# | |
# http://en.wikipedia.org/wiki/Triangular_matrix | |
# http://www.codeguru.com/cpp/cpp/algorithms/general/article.php/c11211/TIP-Half-Size-Triangular-Matrix.htm | |
# | |
# TODO make this act more like a numpy array | |
from __future__ import division | |
from numpy import asarray, asmatrix, ones, triu_indices_from, sqrt, zeros | |
class Triangle(object): | |
""" | |
A sparse representation of the upper triangular portion of a square | |
matrix (or "array" in the numpy sense), including the diagonal | |
The following examples show two of the constructors and `as_array` | |
and `as_matrix`, instance methods which convert the triangle to "dense" | |
representations. | |
>>> Triangle(xrange(21)).to_array() | |
array([[ 0., 1., 2., 3., 4., 5.], | |
[ 0., 6., 7., 8., 9., 10.], | |
[ 0., 0., 11., 12., 13., 14.], | |
[ 0., 0., 0., 15., 16., 17.], | |
[ 0., 0., 0., 0., 18., 19.], | |
[ 0., 0., 0., 0., 0., 20.]]) | |
>>> Triangle.ones(6).to_matrix() | |
matrix([[ 1., 1., 1., 1., 1., 1.], | |
[ 0., 1., 1., 1., 1., 1.], | |
[ 0., 0., 1., 1., 1., 1.], | |
[ 0., 0., 0., 1., 1., 1.], | |
[ 0., 0., 0., 0., 1., 1.], | |
[ 0., 0., 0., 0., 0., 1.]]) | |
""" | |
@staticmethod | |
def is_square(n): | |
""" | |
Determine whether a positive integer n is square using the | |
Babylonian algorithm. This is probably just good enough. See: | |
http://stackoverflow.com/questions/2489435/ | |
>>> all(Triangle.is_square(i * i) for i in xrange(10000)) | |
True | |
""" | |
# do the smallest ones by lookup | |
if n <= 100 and n in {1, 4, 9, 16, 25, 36, 49, 64, 81, 100}: | |
return True | |
# normal case | |
x = n // 2 | |
seen = {x} | |
while x * x != n: | |
x = (x + (n // x)) // 2 | |
if x in seen: | |
return False | |
seen.add(x) | |
return True | |
@staticmethod | |
def edge_to_size(n): | |
""" | |
Returns the size of the triangular portion of an n x n matrix | |
>>> n = 6 | |
>>> Triangle.size_to_edge(Triangle.edge_to_size(n)) == n | |
True | |
""" | |
return (n * n + n) // 2 | |
@staticmethod | |
def size_to_edge(n): | |
""" | |
Returns the dimension of a square matrix whose diagonal is size n, | |
the inverse function of `edge_to_size` | |
>>> n = 21 | |
>>> Triangle.edge_to_size(Triangle.size_to_edge(n)) == n | |
True | |
""" | |
# Weird fact: an integer is "triangular" (fits into the "triangle" | |
# of a square matrix) iff 8x + 1 is a square number. This also | |
# holds when considering n x n triangular matrices whose diagonal | |
# we are ignoring, (i.e., in the subclass TriangleNoDiagonal) | |
# since that is equivalent to the triangle of a perfectly good | |
# (n - 1) x (n - 1) matrix | |
x = 8 * n + 1 | |
if not Triangle.is_square(x): | |
raise ValueError('n ({}) is non-triangular'.format(n)) | |
return (int(sqrt(x)) - 1) // 2 | |
# primary constructor | |
def __init__(self, iterable, dtype=float): | |
L = len(iterable) | |
self.n = self.size_to_edge(len(iterable)) | |
self.triangle = asarray(iterable, dtype) | |
# alternative MATLAB-style constructors | |
@classmethod | |
def zeros(cls, n, dtype=float): | |
""" | |
Construct the triangular component of an n x n matrix with all | |
cells initialized to zero | |
""" | |
return cls(zeros(cls.edge_to_size(n), dtype)) | |
@classmethod | |
def ones(cls, n, dtype=float): | |
""" | |
Construct the triangular component of an n x n matrix with | |
triangular cells initialized to one | |
""" | |
return cls(ones(Triangle.edge_to_size(n), dtype)) | |
# important magic methods (with associated static methods) | |
def __repr__(self): | |
return '{0}({1} x {1})'.format(self.__class__.__name__, self.n) | |
def _get_1d_index(self, indices): | |
(row, col) = indices | |
if col > row: | |
raise ValueError('Point ({}, {}) is in lower triangle'.format( | |
row, col)) | |
return row * self.n - (row - 1) * ((row - 1) + 1) / 2 + col - row | |
def __getitem__(self, indices): | |
return self.triangle[self._get_1d_index(indices)] | |
def __setitem__(self, indices, value): | |
self.triangle[self._get_1d_index(indices)] = value | |
@staticmethod | |
def tri_indices_from(the_array): | |
return triu_indices_from(the_array) | |
def to_array(self): | |
""" | |
Return (non-sparse) array representation. Non-triangle cells are | |
populated with zeros | |
""" | |
# initialize the (full) array to be returned | |
the_array = zeros((self.n, self.n)) | |
# write into new array; indices are selected by converting the x | |
# and y vectors returned by the indexing function into a single | |
# vector of (x, y) tuples | |
the_array[self.tri_indices_from(the_array)] = self.triangle | |
# and we're done | |
return the_array | |
def to_matrix(self): | |
""" | |
The same as to_array, but returns a matrix instead | |
""" | |
return asmatrix(self.to_array()) | |
class TriangleNoDiagonal(Triangle): | |
""" | |
A sparse representation of the upper triangular portion of a square | |
matrix (or "array" in the numpy sense), excluding the diagonal | |
The following examples show two of the constructors and `as_array` | |
and `as_matrix`, instance methods which convert the triangle to "dense" | |
representations. | |
>>> x = TriangleNoDiagonal(xrange(15)) | |
>>> y = x.to_array() | |
>>> y | |
array([[ 0., 0., 1., 2., 3., 4.], | |
[ 0., 0., 5., 6., 7., 8.], | |
[ 0., 0., 0., 9., 10., 11.], | |
[ 0., 0., 0., 0., 12., 13.], | |
[ 0., 0., 0., 0., 0., 14.], | |
[ 0., 0., 0., 0., 0., 0.]]) | |
>>> x[2, 3] == y[2, 3] == 9. | |
True | |
>>> TriangleNoDiagonal.ones(5).to_matrix() | |
matrix([[ 0., 1., 1., 1., 1., 1.], | |
[ 0., 0., 1., 1., 1., 1.], | |
[ 0., 0., 0., 1., 1., 1.], | |
[ 0., 0., 0., 0., 1., 1.], | |
[ 0., 0., 0., 0., 0., 1.], | |
[ 0., 0., 0., 0., 0., 0.]]) | |
""" | |
# all overloadings of the superclass | |
@staticmethod | |
def edge_to_size(n): | |
""" | |
Returns the size of the triangular portion of an n x n matrix, | |
excluding the diagonal | |
""" | |
return (n * n - n) // 2 | |
@staticmethod | |
def size_to_edge(n): | |
""" | |
Returns the dimension of a square matrix whose diagonal is size n, | |
the inverse function of `edge_to_size` | |
""" | |
x = 8 * n + 1 | |
if not Triangle.is_square(x): | |
raise ValueError('n ({}) is non-triangular'.format(n)) | |
return ((int(sqrt(x)) - 1) // 2) + 1 | |
@staticmethod | |
def tri_indices_from(the_array): | |
""" | |
The second argument to triu_indices_from (1) indicates an "offset" | |
of 1; in this context, this means the diagonal indices are ignored | |
""" | |
return triu_indices_from(the_array, 1) | |
def _get_1d_index(self, indices): | |
(row, col) = indices | |
if col <= row: | |
raise ValueError('Point ({}, {}) is in lower triangle'.format( | |
row, col)) | |
return row * (self.n - 1) - (row - 1) * ((row - 1) + 1) / 2 + \ | |
col - row - 1 | |
if __name__ == '__main__': | |
import doctest | |
doctest.testmod() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
At line 153:
should the comparison be this instead:
because without this fix, a contradictory error is thrown:
and also the following is already used with non-diagonals at line 249: