Created
August 23, 2015 11:31
-
-
Save kyu999/67404e7a1ebb3dcd8b4a to your computer and use it in GitHub Desktop.
monday todo
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Monday todo: | |
Get support vectors and cul the minimum margin of them. Margin larger => better border | |
``` | |
from sklearn import svm | |
X = [[0, 0], [1, 1]] | |
y = [0, 1] | |
clf = svm.SVC(kernel='linear') | |
clf.fit(X, y) | |
clf.support_vectors_ | |
``` | |
サポートベクター群の、境界関数を通した出力値を算出しその絶対値の最小値を取得。 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
import numpy as np
from matplotlib import lines
from matplotlib import mlab
from matplotlib import pyplot as plt
from scipy import stats
def defomation(w, b, x):
return (-(b[0] + w[0][0] * x) / w[0][1])[0]
def getfig(aminos, data1, data2):
fig = plt.figure()
# プロット領域(1x1分割の1番目に領域を配置せよという意味)
ax = fig.add_subplot(111)
# 散布図
sc = ax.scatter(data1, data2, s=25, marker='x', color='b')
# 単回帰直線
func = lambda x: defomation(w, b, x)
line = lines.Line2D([0, 1], [func(0), func(1)], color='r')
ax.add_line(line)
# X, Y方向の表示範囲
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
# タイトル
ax.set_title('Protein Separation by Aminos', size=16)
ax.set_xlabel(aminos[0], size=14)
ax.set_ylabel(aminos[1], size=14)
# 凡例
ax.legend((sc,), ('2nd Test',), scatterpoints=1, loc='upper left', fontsize=10)
# グリッド表示
ax.grid(True)
return plt
#plt.show()
data1 = [0.3, 0.2, 0.3, 0.4, .5]
data2 = [.1, .2, .4, .8, .16]
w = np.array([[1, 1]])
b = np.array([[-0.3]])
plt = getfig("AE", data1, data2)