Created
July 21, 2021 06:05
-
-
Save kzinmr/1b31b0b84c9a5569f317bde0d8c927fb to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from textdistance import damerau_levenshtein | |
import mojimoji | |
import regex as re | |
def partial_ratio(s1, s2, levenshtein_ratio=damerau_levenshtein.normalized_similarity): | |
def _preprocess(s): | |
s = mojimoji.zen_to_han(s, kana=False, ascii=True, digit=True) | |
s = s.lower() | |
s = re.sub('\s+', '', s) | |
return s | |
def _match_substring(shorter, longer): | |
window = len(shorter) | |
rng = len(longer) - window | |
if rng>0: | |
scores = [levenshtein_ratio(shorter, longer[i:i+window]) for i in range(rng)] | |
# max_ix = np.argmax(scores) | |
return max(scores) | |
else: | |
return 0. | |
s1 = _preprocess(s1) | |
s2 = _preprocess(s2) | |
shorter, longer = s1, s2 | |
if len(s1) == len(s2): | |
return levenshtein_ratio(s1, s2) | |
elif len(s1) > len(s2): | |
shorter, longer = s2, s1 | |
max_score = _match_substring(shorter, longer) | |
return max_score | |
def fuzzy_difference(gs, ps, sim=lambda x,y:int(x==y), threshold=1.): | |
# gs - ps | |
diffs = set() | |
for g in gs: | |
if max([sim(g, p) for p in ps]) < threshold: # g not in p | |
diffs.add(g) | |
return diffs |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment