Last active
September 10, 2024 10:07
-
-
Save kzinmr/441f713ddc8b85559fa79f6703fccf2e to your computer and use it in GitHub Desktop.
PMI calculation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
"calculate PMI(A,B)=P(A,B)/P(A)P(B) for every token A and B in a window" | |
from itertools import tee, combinations | |
from collections import Counter | |
def count_bigram(sentence, window=5): | |
# ['A','B','C','D', 'E', 'F', 'G'], 4 -> | |
# [['A', 'B', 'C', 'D'], | |
# ['B', 'C', 'D', 'E'], | |
# ['C', 'D', 'E', 'F'], | |
# ['D', 'E', 'F', 'G']] | |
if len(sentence) >= window: | |
num = len(sentence) - window + 1 | |
else: | |
num = len(sentence) | |
window = num | |
d_bi = Counter() | |
for i, it in enumerate(tee(sentence, num)): | |
context_window = list(it)[i:i + window] | |
d_bi += Counter([tuple(sorted(bi)) for bi in combinations(context_window, 2)]) | |
return d_bi | |
def build_pmi_stats(corpus, window=5): | |
uni_counts = Counter([token for sentence in corpus for token in sentence]) | |
bi_counts = Counter() | |
for sentence in corpus: | |
bi_counts += count_bigram(sentence) | |
return uni_counts, bi_counts | |
class PMI: | |
def __init__(self, corpus): | |
uni_counts, bi_counts = build_pmi_stats(corpus) | |
self.uni_counts = uni_counts | |
self.bi_counts = bi_counts | |
def pmi(self, a, b): | |
return self.bi_counts[tuple(sorted([a, b]))] / (self.uni_counts[a] * self.uni_counts[b])\ | |
if a in uni_counts and b in uni_counts else 0. | |
c = Counter({('A', 'B'): 1, ('A', 'C'): 1, ('A', 'D'): 1, ('B', 'C'): 2, ('B', 'D'): 2, | |
('C', 'D'): 3, ('B', 'E'): 1, ('C', 'E'): 2, ('D', 'E'): 3, ('C', 'F'): 1, | |
('D', 'F'): 2, ('E', 'F'): 2, ('D', 'G'): 1, ('E', 'G'): 1, ('F', 'G'): 1}) | |
assert c == count_bigram(['A','B','C','D', 'E', 'F', 'G'], 4) | |
assert (Counter(), Counter()) == build_pmi_stats([]) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment